WGLF summary to CCEM 24 March 2017

Jonathan Williams WGLF Chairman

BIPM Comparisons

- * Typically 25 to 30 resistance and capacitance calibrations per year
- * Few Zener calibrations
- * On-site Josephson comparisons continue
- * Following the first on-site QHR comparison in the new series, there have been problems with the next two, a third is planned next for CMI.

- * K2 resistance at 10 M Ω and 1 G Ω
 - * Pilot laboratory: NRC
 - Started September 2012
 - * Taking longer than expected due to problems with the travelling standards
 - * Schedule was re-planned
 - * Measurements are complete
 - Draft A report planned for June 2017

- * K5 primary power at 120 & 240 V, 5 A, 53 Hz; phase 0° , \pm 60° , \pm 90° , two Radian travelling standards
 - * Aimed uncertainty level < 20 μW/VA
 - * Planned loop:
 - * Pilot measurements: PTB
 - * SIM: NRC, CENAM and INMETRO
 - * EURAMET: VSL, LNE and SP
 - * APMP: NIM, NMIA and VNIIM
 - * From Afrimets: NMISA
 - * Target of 2.5 years of measurements, 6 months analysis
 - Organisation by CENAM and report writing by VSL

- * K₁₃ power harmonics
 - * Participants agreed: NIST, NRC, SP, PTB, NPL, VNIIM, NIM
 - * Travelling standard Fluke 6105
 - * Technical protocol written by NRC and SP, includes up to 4 sets of waveforms
 - * Support group NIST, NRC, SP, NPL, NIM
 - * The circulation of the travelling standard will be made in three rounds, first to SIM, then to EURAMET and finally to COOMET with measurements at NIM in between
 - * Comparison scheduled to start in summer 2017

- * K4 capacitance, 10 pF and 100 pF, 1 kHz and 1.592 kHz
- * Adopted a **star** approach
 - * BIPM, METAS, NIM, NIST, NMIA, NPL, PTB and VNIIM
 - * BIPM will be a participant and will not be the KCRV
 - * Measurements in laboratories have begun and standards will travel to BIPM during April. Aim to have everything completed by the end of 2017

- * K6a/9K6a, ac/dc voltage transfer:
 - * 1 4 V, 10 Hz 1 MHz & 500 1000 V, 10 Hz 100 kHz
- * Two travelling standards will be circulated, combining both activities into one exercise to save on transport and reporting costs
- * **SP**, INTI, PTB, NMIA, **NRC**, JV, NMIJ, NIM, LNE, NMISA, also INMETRO, **Astar** (bold = 1000 V)
- Coordinator to reconfirm participants with WGLF chair
- * Support group: SP (protocol), INTI (reporting), PTB (pilot measurements)
- Expected start date 2017-8

- * K₃ inductance 10 mH and 1 kHz
- * Two temperature-controlled standards made available by PTB
- * **Proposed participants:** PTB, NIST, NPL, VSL, NMIA, NRC, NMISA, INMETRO, CENAM, KRISS, VNIIM
- * PTB willing to be the pilot laboratory if supported by two further NMIs to coordinate and write up the report
- * Coordinator to reconfirm participants with WGLF chair
- * Target start date 2018-19

WGLF strategy for comparisons

- * 10 Key quantities, 1-4 values in each quantity
- * Discipline of NOT increasing the number of quantities without a strong case
- * Review the values within a quantity
- * Interval between comparisons typically 10 years, based on evolution in laboratories, some quantities longer or even no future comparison scheduled
- Choices also strongly influenced by the activities in the RMOs

Comparison overview

Further comparisons

- * Reviewed the case for DC voltage
 - * 1 V and 10 V are sufficiently covered by Josephson effect standards and comparisons quantum standard maintains equivalence
 - DC voltage ratio comparison considering a comparison with a more simple transfer standard with just two or three ratios up to 1000 V
- * Reviewed the case for DC resistance
 - * 100 ohm resistance is sufficiently covered by the quantum Hall effect standards and comparisons. Another example of a quantum standard maintaining equivalence

Further comparisons

- * Reviewed the case for AC voltage ratio, K7
 - * Inductive voltage dividers are very stable. Previous comparison meets the present needs
- * Reviewed the case for AC/DC current, K12
 - * The previous comparison carried out 2005-06 is sufficient for now, revisit the requirements in 5 years' time
- * Reviewed the case for AC/DC transfer at 10, 100 mV, K11
 - * AC quantum standards based on the Josephson effect are rapidly developing in this area, review the landscape when the technology has stabilised ready for intercomparison

Other matters

- Proposal to update CMC classifications for categories 8 (high voltage) and 9 (other DCLF quantities)
 - Received an update from the WGLF task group who are working with the KCDB office on the most efficient approach
- Any other business
 - Euramet are working on best practice documents for intercomparison planning and reporting – WGLF chair to work with TC-EM chair to see how this work can be shared across the CCEM membership
 - * Demand is emerging for traceability for DC power relating to charging of electric vehicles