

Photometry Metrology for Earth Observation

Measuring absolute Total Solar Irradiance

PMOD/WRC is member of CCPR and designated institute by METAS (CH) and WMO

Prof. Dr. Werner Schmutz Director PMOD/WRC

Consultative Committee for Photometry and Radiometry 23rd meeting, BIPM, Paris 22./23. October 2016

Overview

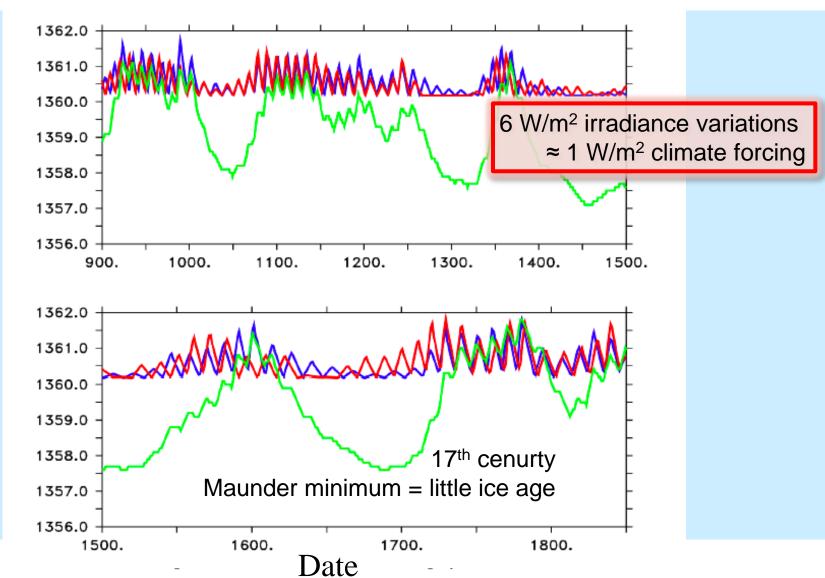
Measuring absolute Total Solar Irradiance

- Motivation
- The problem(s)
- Present status of absolute TSI instrument calibrations and stability of TSI record
- Future of PMOD/WRC TSI space experiments

Sun – climate correlation

The
Sunspot
minimum
1600-1700,
the
Maunder
minimum,

coincides
with a
climate
minimum,
the so
called little
ice age



In 1658 king Karl X Gustav of Sweden marched his army over the ice of the belts to defeat Denmark

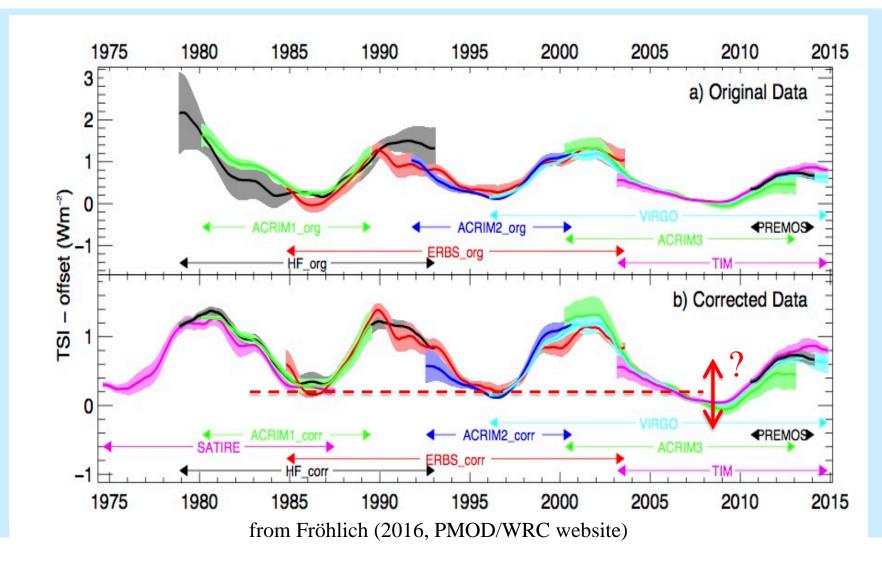
Reconstructions of solar irradiance

4

From PMIP4 irradiance forcing data (Jungclaus et al. 2016, in preparation)

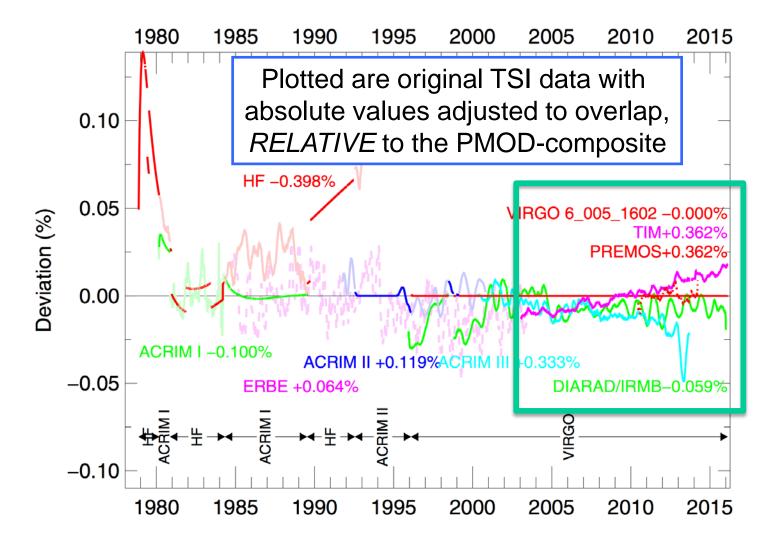
Werner Schmutz

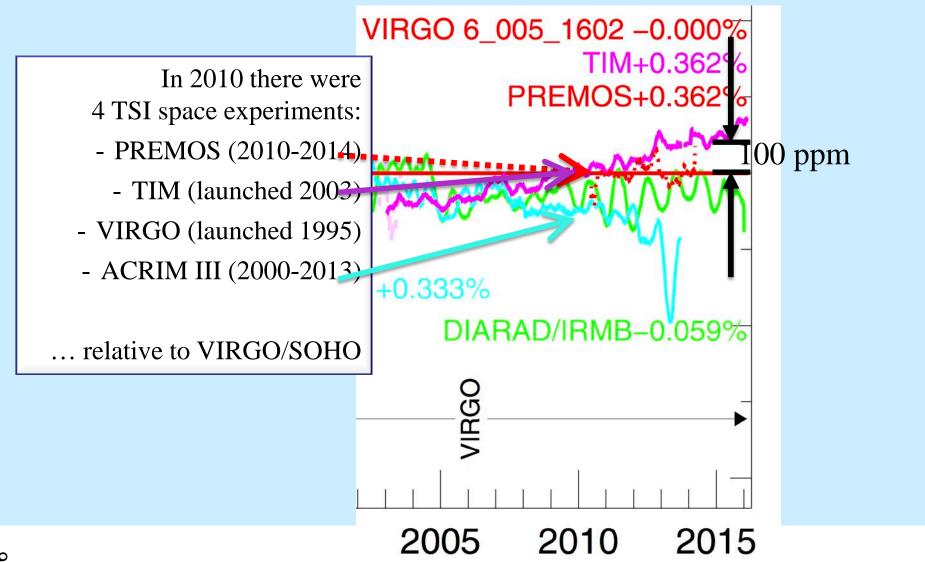
What do we know?

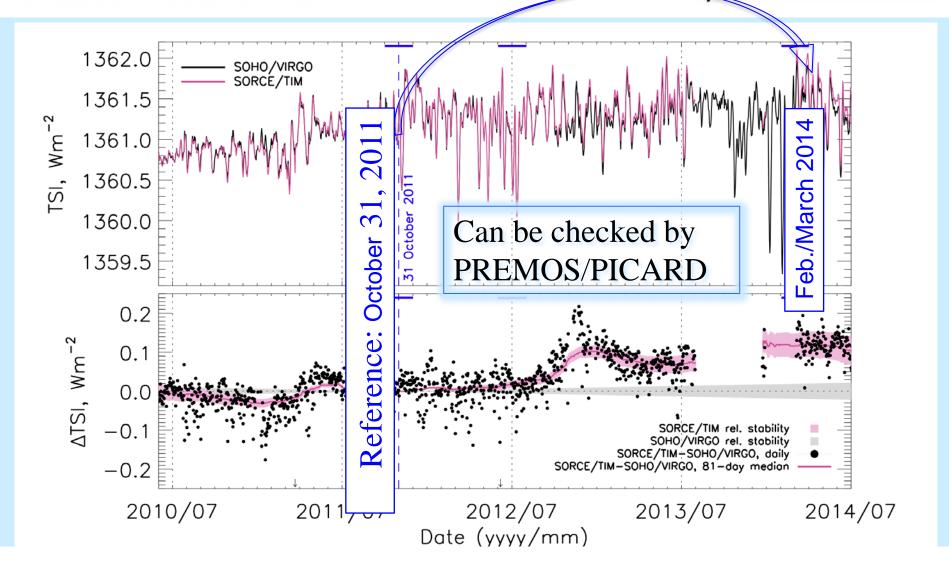


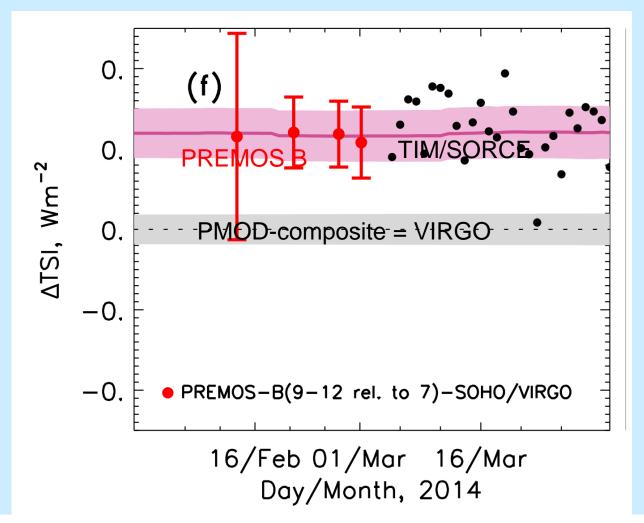
There are Total Solar Irradiance in space observation since 1979

→ What are the amplitudes of TSI variations over centennial time scales?


Is there an observed TSI-trend?


Long term TSI trend


Diverging TSI trends


TIM/SORCE vs VIRGO/SOHO

PREMOS/PICARD vs TIM and VIRGO pmod wrc

Ball et al. (JSWSC 2016, in press)

Ball et al. 2016 conclude

PREMOS \mathcal{B} sensitivity correction has an uncertainty

October 2011 to February 2014 ratio: +-0.02 Wm⁻² (over 2.3 yr) → 6 ppm per year

PREMOS B agrees with TIM

(October 2011 to March 2014)

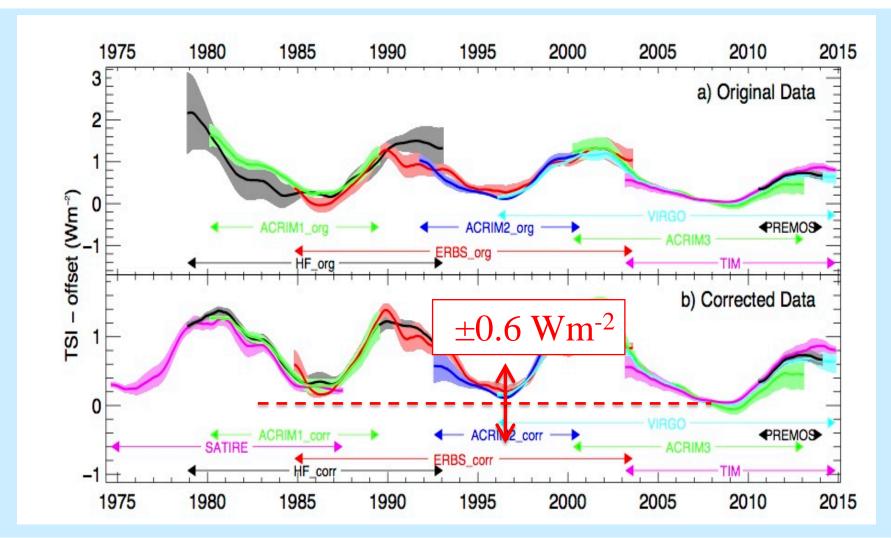
→ TIM stability confirmed to ≤ 6 ppm/yr

PREMOS \mathcal{B} disagrees with PMOD composite

Difference: 0.12 Wm⁻² or 90 ppm after 2.3 years

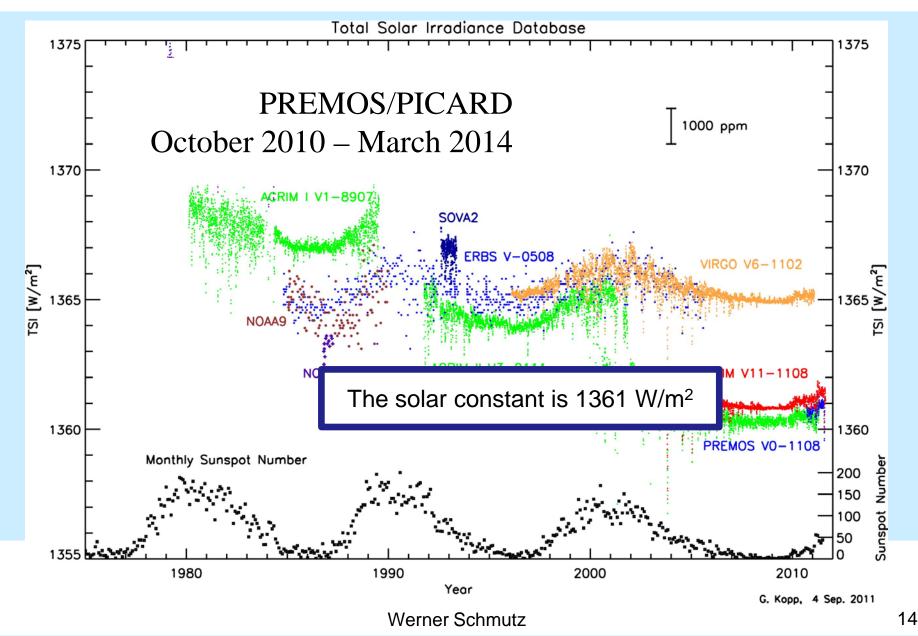
→ PMOD-composite stability not better than ≥ 38 ppm/yr

(not known: systematic or random?)


Extrapolate → TSI-composite

cycle-cycle minima uncertainty.

11 x 38 ppm = 418 ppm \rightarrow 0.6 Wm⁻²!


Extrapolating the disagreement

shown at last the last CCPR 2014 ...

Absolute calibration of TSI

PREMOS is the first SI-traceable calibrated radiometer in space

First Light on 27. July 2010

PREMOS (TRF-calibrated*)
TIM/SORCE (characterized)

1360.9 +- 0.4 W/m² 1361.3 W/m²

Absolute end-to-end calibrations of space experiments for irradiance levels of >1000 W/m² are all made at one facility, the TSI Radiometer Facility (TRF) at LASP in Boulder, USA, which is traceable to the NIST cryogenic radiometer.

^{*} Schmutz et al. 2013, AIP 1531, 624, doi: 10.1063/1.4804847 TRF- facility calibration facility Boulder CO, USA

IAU resolution 2015

IAU = International Astronomical Union

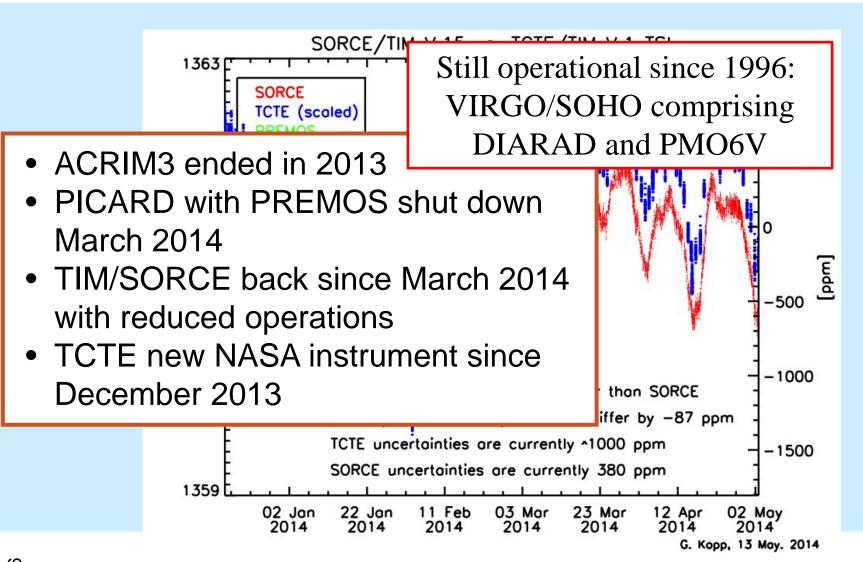
THE ASTRONOMICAL JOURNAL, 152:41 (7pp), 2016 August © 2016. The American Astronomical Society. All rights reserved.

doi:10.3847/0004-6256/152/2/41

NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3

Table 1 Nominal Solar and Planetary Conversion Constants Set Forth by IAU 2015 Resolution B3

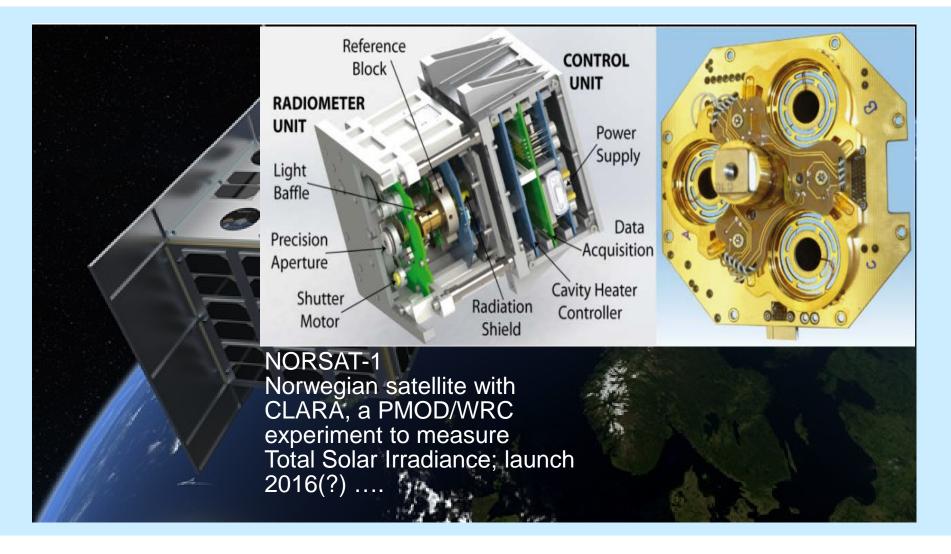
Solar Conversion Constants	Planetary Conversion Constants					
$1\mathcal{R}_{\odot}^{N} = 6.957 \times 10^{8} \mathrm{m}$	$1R_{Ec}^{N} = 6.3781 \times 10^{6} \mathrm{m}$					
$1S_{\odot}^{N} = 1361 \text{ W m}^{-2}$	$1\mathcal{R}_{Ep}^{N} = 6.3568 \times 10^{6} \mathrm{m}$					
$1\mathcal{L}_{\odot}^{N} = 3.828 \times 10^{26} \mathrm{W}$	$1\mathcal{R}_{1c}^{N} = 7.1492 \times 10^{7} \mathrm{m}$					
$1T_{\odot}^{N} = 5772 \text{ K}$	$1\mathcal{R}_{10}^{N} = 6.6854 \times 10^{7} \text{ m}$					
$1(\mathcal{GM})_{\odot}^{N} = 1.3271244 \times 10^{20} \text{ m}^3 \text{ s}^{-2}$	$1(\mathcal{GM})_{E}^{N} = 3.986004 \times 10^{14} \text{ m}^{3} \text{ s}^{-2}$					
	$1(\mathcal{GM})_{J}^{N} = 1.2668653 \times 10^{17} \mathrm{m}^{3} \mathrm{s}^{-1}$					


Note. Although chosen to be as close to the measured quantities as feasible, given the observational uncertainties for practical reasons, these values should not be considered the true solar/planetary properties. They should be understood as conversion values only.

¹⁶ Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK

¹⁷ ASD/IMCCE, CNRS-UMR8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, F-75014 Paris, France
Prof. Emer., Physics & Astronomy Department, University of Calgary, 2500 University Dr., NW, Calgary, AB T2N 1N4, Canada
¹⁹ University of Central Florida, Physics Department, 4000 Central Florida Blvd., Orlando, FL 32816, USA
²⁰ Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
²¹ Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany
Received 2016 April 1; revised 2016 May 30; accepted 2016 May 31; published 2016 August 4

Transition of TSI record 2014



Preliminary TCTE and SORCE results courtesy of Greg Kopp

The next TSI experiment: CLARA/NORSAT-1

CLARA calibration at TRF

		TRF Ground (532 nm laser, vacuum)							Space (solar spectrum, vacuum)								
		Channel A Channel		nel B	B Channel C		Channel A			Channel B			Channel C				
	Characterization Item	Value	[ppm]	Value	g [ppm]	Value	σ [ppm]	Value	g [ppm]	[ppm] ²	Value	σ [ppm]	σ [ppm] ²	Value	[ppm]	g [ppm]	
	Aperture area (1/ Capert) [mm²]	19.6299	28	19.6242	28	19.6235	28	19.6299	28	-	19.6242	28	-	19.6235	28	-	
	Aperture Temperature	0	31	2	31		31	ु	31	31		31	31	728	31	31	
	Absorptivity (Caba)	1.002060	354	1.002202	378	1.002051	352	1.002192	375	21	1.002343	400	22	1.002183	372	20	
	Pointing	-		S 25		x 25	W 25	V 13	30	30	5 /	30	30		30	30	
	Diffraction (Cag)	1.000491	18	1.000491	18	1.000491	18	1.000867	31	13	1.000867	31	13	1.000867	31	13	
Scal	Non-Equivalence (C _{ne})	1.000007	4	1.000007	4	1.000007	4	1.000830	65	65	1.000830	65	65	1.000830	65	65	
Native	Heater Voltage Measurement	-	3180	-	3180	97	3180	1 19	3180	258	7:	3180	258	-	3180	258	
	Shunt Voltage Measurement	-	3180	-	3180	1-	3180	38	3180	258	4:	3180	258	-	3180	258	
	Shunt Resistance Measurement		80	1 34	80	14	80	1 34	80	80	9-1	80	80	-	80	80	
	Lead heating (Ca)	1.000950	50	1.001084	50	1.001009	50	1.000950	50	-	1.001084	50	-	1.001009	50	100	
	Scattered Light (Cac)	0.999690	150	0.999690	150	0.999690	150	0.999690	150	-	0.999690	150		0.999690	150	-	
	Calibration Factor	1.003200	4515	1.003477	4517	1.003251	4515	1.004536	4517	-	1.004822	4519	-	1.004586	4517	7.5	
	Repeatability	-	145		109] %	179	-	-	145	-	-	109	120	100	179	
Scale	TRF Comparison Factor	1.000650	285	1.000650	285	1.000650	285	1.003261	-	285	1.002595		285	1.004269	12	285	
Lab Scale	Calibration Factor	1.003261	4526	1.002595	4527	1.004269	4527	1.001271	-	498	1.002221	11+1	489	1.000316		509	

Conclusions

- TSI-composite has a problem 2013/2014 at the transition from the VIRGO-ACRIM-III-TIM-PREMOS to the VIRGO-TIM-TCTE period
 - → New assessment of the relative calibration of PREMOS/PICARD supports the TSI record of TIM and disagrees with VIRGO (*Ball et al. 2016, JSWSC in press*)
 - → The next TSI experiment will be CLARA/NORSAT-1

 TRF end-to-end calibrated!

 launch end 2016/beginning 2017

Community support for TSI (and SSI) monitoring is still needed:

<u>It is important to get multiple and overlapping</u>

irradiance data!

Thank you for your attention!