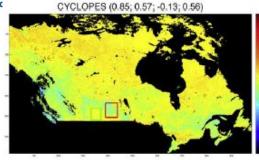


Earth Observation and Climate Measurement

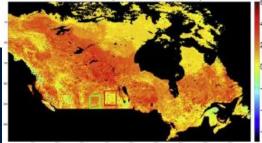
Dr Nigel Fox Head of Science EO, Climate & Optical

Satellite Data Products:

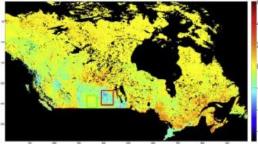
Knowledge/information

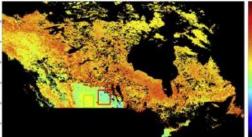


Desire


- Many sensors
- Similar products
- Observations on demand' (nano-sats)
- Trustable for decades

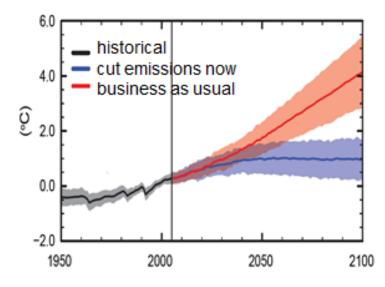
Challenges


- Different algorithms
- Limited validation data
- Data similar but different
- Scene/pixel dependent Uc
- Lack of standardisation


ECOCLIMAP (0.56; 1.78; 1.46; 1.02)

MODIS (0.50; 1.32; 0.92; 0.94)

Current challenges

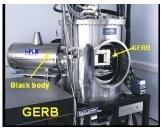


- Unabated climate change could cost up to 20% of GDP (Stern Review, 2006)
- With current data quality, wide variations in climate model forecasts cannot be reduced for many decades
- There are wide economic, political and social implications for 'getting it right'

Thus improving confidence in climate data to inform science, government and policy is our main focus but also supporting applications for agriculture/pollution etc

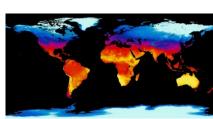
'Data cube' of 'Analysis Ready Data' requires robust analytics and provenance/QA from all data streams increasingly from 'on- demand' capacity from nano-sats

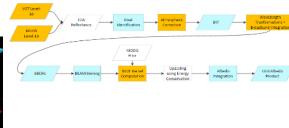
Earth observation at NPL



Pre-flight

In-flight

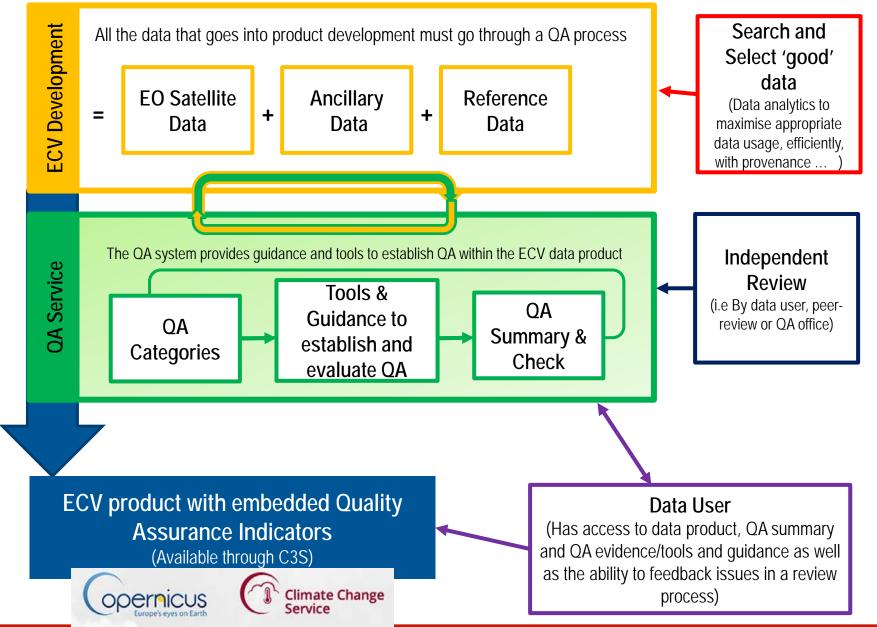



Instrument calibration and quality assurance Current sensors under Cal Sentinel 2, 3, 4, EarthCARE, MTG

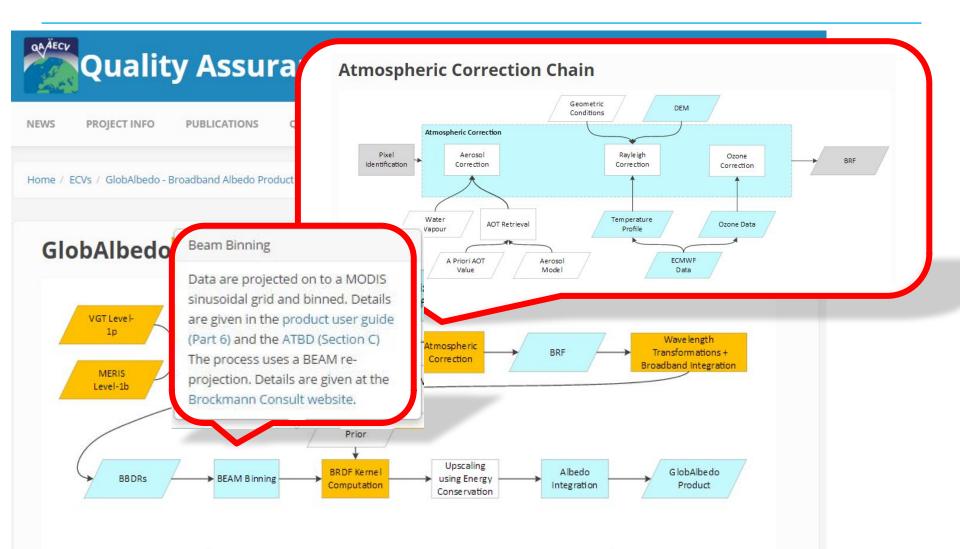
Establishing test-sites, field-work validation & leading a world-first satellite calibration system, TRUTHS

Products & Exploitation

Improving climate services & models to support UK policy


Essential Climate Variables (ECV)

The Global Climate Observing System (GCOS) of UN has defined 50 ECVs that must be observed accurately over the long term to support climate modelling (~2/3 have an optical related measurand)

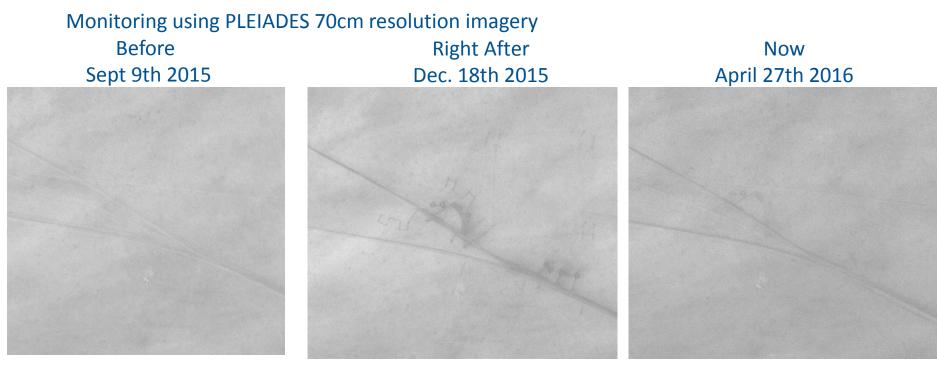


FRAMEWORK FOR IMPLEMENTING QA IN ECV DATA PRODUCTS

Traceability Diagrams

Key				
Main Process	Data /	Click to see	Click to see	Click to return
	Product	process	more details	to main chain

www.qa4ecv.eu


RADCALNET: network of characterised autonomous instrumented test-sites (reflectance) (initially 4: US, Fr, China, + ESA (Namibia)

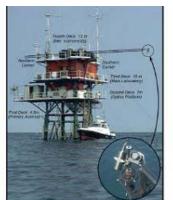
Impact of the characterization campaign

Footprints Impact: ~6%

Footprints Impact: ~2%

Limited impact and fading away...

Characterisation to enable SI traceability has its challenges!


- Reflectance measured over large areas in short time as illumination source (sun) angle moves
- (Laboratory instruments/concepts need to be adapted to the field
- Suffer Extremes of temperature/environment
- Atmosphere well-characterised & no clouds
- Uncertainty (for climate) factor 5 to 10 too high

Good Exercise

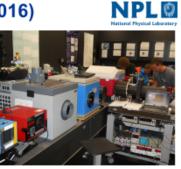
Also the oceans "Colour" ↑ & Temperature ←

Multi-angular reflectance

A surprise for the "locals"

"Ghost-Busters"

COMPARISONS


BB comparison (June 2016)

- 1. Miami University USA
- 2. ONERA France
- 3. University of Valencia- Spain
- 4. University of Southampton UK
- 5. Qing Dao -China
- 6. RAL UK
- 7. CSIRO Australia
- 8. KIT- Germany

273 K to 323 K (0 to 50 °C)

278.304

15.15

WST comparison @Reservoir near NPL and Heathrow airport **July 2016**

- 1. University of Valencia (Spain)
- 2. University of Southampton (UK)
- Qing Dao (China) -1 3.
- 4. Qing Dao (China) -2
- 5. RAL (UK)
- CSIRO (Australia) 6.
- 7. KIT (Germany)
- 8. DMI (Denmark)
- 9. GOTA (Canary Islands) 10. JPL NASA (USA)

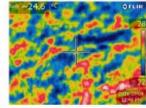
NPLO

cesa

Radiometer comparison

- 1. Miami University (USA)
- ONERA (France)
- University of Valencia (Spain)
- University of Southampton (UK)
- 5. Qing Dao (China) -1
- 6. Qing Dao (China) -2
- RAL (UK)
- CSIRO (Australia)
- 9. KIT (Germany)
- 10. DMI (Denmark)
- 11. GOTA (Canary Islands
- 12. JPL NASA (USA)
- 13. Ian Barton (Australia)

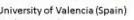
MAERI (UofM) viewing NPL ammonia Heat pipe

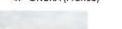


240 K to 318 K

LST (Sun & Cloud) @ NPL sports field and carpark

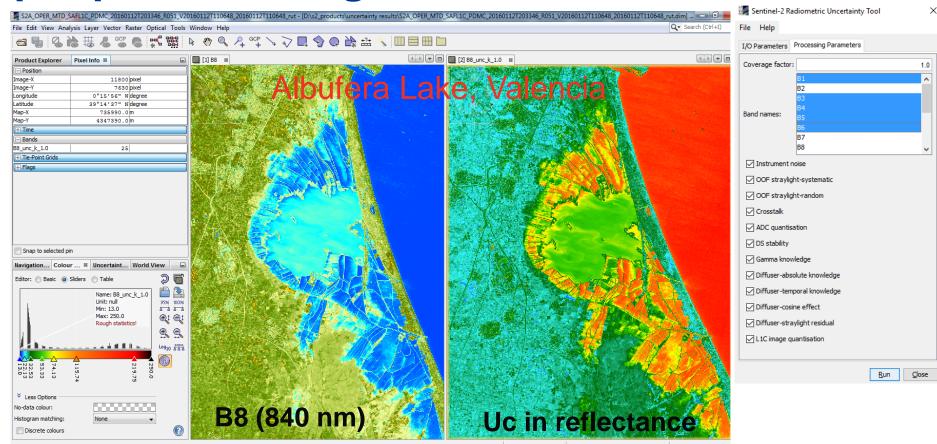
- 1. University of Valencia (Spain)
- 2. KIT (Germany)
- 3. JPL NASA (USA)
- 4. ONERA (France)





Sducial reference

NPL



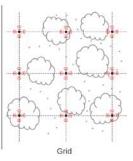
Enabling 'user generated' per pixel Uc images

NALIONAL Physical Laboratory

Sentinel 2 constellation will produce 1.8 TBytes a day (scene ~1.4GB), adding Uc info would double size (increasing storage and transfer time)

NPL developed software tool to allow scene dependent Uc image to be created by, and at the user terminal after data download

Virtual Truth

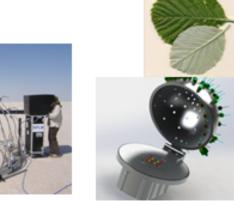


 Establishing ECV traceability through modelling, reference measurements and test-site characterisations

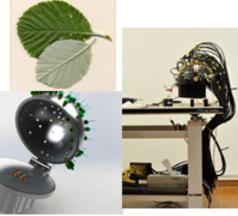
Instrument characterisation in lab and field conditions

Testing and evaluation of sampling schemes (Temporal, Spatial)

3D Radiative Transfer model


- Simulate a virtual validation site (algorithm quantification)
 - Simulate real-world test site

Comparison of in situ with satellite data with full traceability and known uncertainties

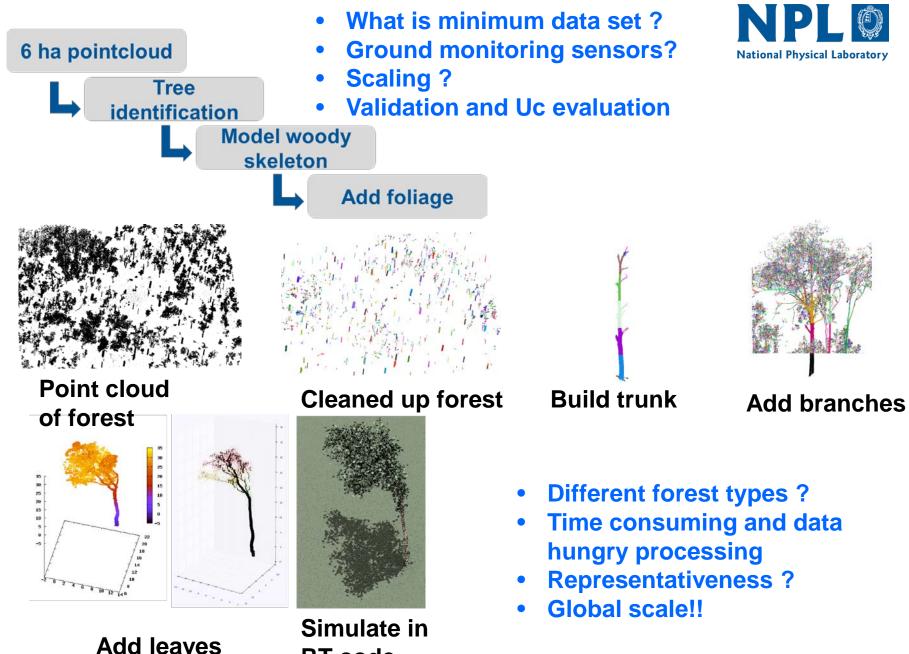

Traceability and Validation of Bio-physical products

Field Gonio-meter for spectral reflectance (BRF) of individual leafs

(JRC, INRIM, NPL)

GRASS ~ 2 m diameter

To $\sim 20 \text{ cm}$ diameter



Data collection to build 'point cloud'

Build virtual forest

RT code

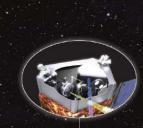
AIRBUS

TRUTHS (Traceable Radiometry Underpinning Terrestrial and Helio-Studies): Enabling a calibration & climate TRUTHS observatory (a proposal to ESA EE9)



Status of the

GCO8 195


"TRUTHS has important potential contributions to make both directly through well-calibrated measurements and indirectly through facilitating inter-calibration of the data from other platforms" GCOS 2015

195 (2015) Strategy Towards an Architecture for Climate Monitoring from Space

CEOS/CGMS/WMO (2013)

"....a dedicated mission flying an SI traceable calibration reference standard would be an important element of a future architecture (see CLARREO and TRUTHS)."

Traceable Radiometry Underpinning Terrestrial- and Helio- Studies

Enabling a Calibration and Climate Observatory

> Proposal for ESA Earth Explorer 9

TRUTHS Establishing a 'fiducial' reference data set of TOA level 1 data for climate and calibration

rotating arm

Transfer

radiometer

Laser feed

bundle

Hyperspectral

imager

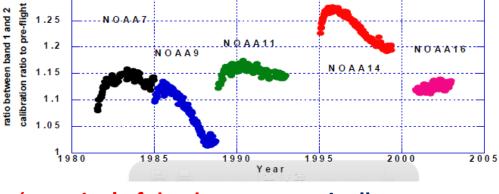
Irradiance

sphere

Airbus UK

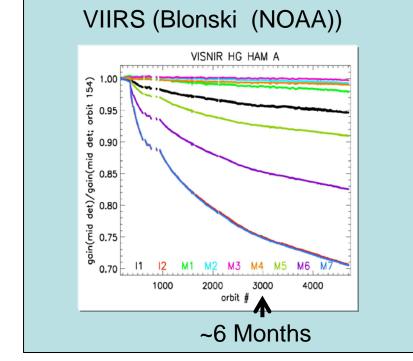
crvo coolers

- A satellite proposed with a wide UK partnership led by NPL to provide 10 times more accurate climate data (a Snapshot of climate state from which to monitor change) and upgrade the performance of the world's EO satellites
 - A space climate and calibration observatory, NMI in space
- Benefits include:
 - Informing policy on the best adaptation strategies
 - Facilitating growth in climate services extracting value from 'Big Data' quantifying long term risk e.g. insurance
 - Secondary products agriculture, resources ...
- Based on heritage components: submitted to ESA also looking for national and bi-lateral partnerships also possibilities on ISS



What does TRUTHS measure?

- Incoming Total Solar Irradiance
- Incoming spectral Solar irradiance (300 2400 nm)
- Earth reflected solar spectral radiance (320 2400 nm)
 - Globally @ 50 m spatial resolution & 5 nm spectral
 - Can be convolved to address many ECVs and applications


In addition to climate:

1.3

'greening' of the deserts – nominally a measure of Vegetation should be linear in desert

All optical sensors drift from pre-flight calibration

- 0.01%

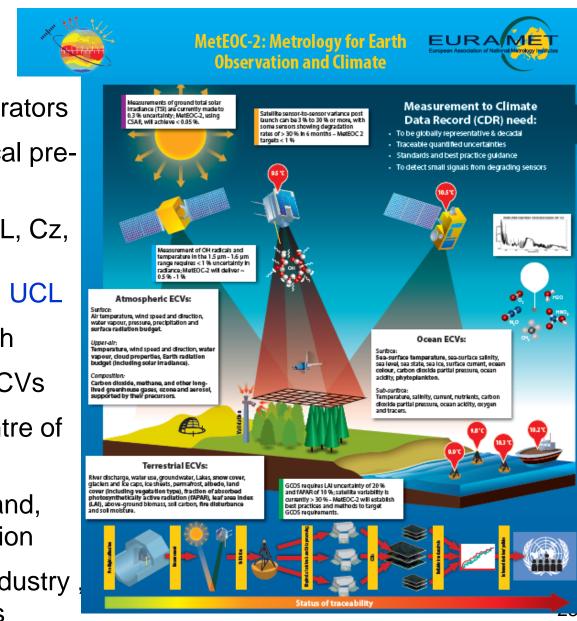
- 0.3%
- 0.3%

TRUTHS upgrades the Earth observing system for climate

As TRUTHS passes over the same area as another satellite, it can transfer its 'absolute calibration' and upgrade the satellites accuracy

Training Course: Uncertainty analysis 'GUM for EO'

Basic Uncertainty Training (non-specialised)


NPL online courses

Other material

Sensor analysis Level 1: Introduction to FCDR Uncertainty analysis Being developed for EO **FIDUCEO Existing book** Level 2: Land product aspects and presentations at Level 2: Atmospheric http://www.meteoc.org/ outreach-training.html product aspects **NPL e-Course** expected end Level 2: Ocean 2016 product aspects

Meteoc-2 (Started Sep 2014) Coordinator N Fox (NPL) NPL WWW.emceoc.org (MetEOC-3 proposal in preparation)

- ~ 40 man years of effort - aligned to WMO, CEOS, GEO, ESA, etc ~15 collaborators
- MetEOC 1: resolved most critical preflight Cal needs of EO sector
- NMIs from, UK, F, D, Fi, I, NL, Cz, Sp, CH
 + RAL, DLR, FGI, BUW, Ujul. UCL
- Concentrates on Post-launch
- End to End Traceability & ECVs
- Seek to establish virtual centre of excellence
- Addresses ~15 ECVs in Land, Atmosphere, Ocean, Radiation
- Stakeholder support from industry academia, international orgs

In summary

- NPL supports a range of work to improve the data that goes into climate models, from instrument design to the end-user product
 - How to ascribe Uc (QA info) to a product
 - Means to assign scene dependent Uc per pixel for a CDR
- TRUTHS provides a comprehensive benchmark for the Fundamental Climate Data Record (FCDR) in the solar reflective domain provides benefits along the entire C3S supply chain, CCI and other EO applications including upgrade of sensor performance particularly valuable for new nano-sats and a flagship for Metrology
- New metrology new skill sets ranging from Geographers to Mathematicians & the need to educate on SI and Uc analysis in general

As we increase the accuracy in climate data, we reduce risk and increase the effectiveness of policies and adaptation strategies

Sentinel/EO constellation