

X-ray Crystal Density Method to Determine the Avogadro and Planck Constants

Horst Bettin Physikalisch-Technische Bundesanstalt Braunschweig, Germany

The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant *h* to be 6.626 070 040 x 10^{-34} when expressed in the unit J s, which is equal to kg m² s⁻¹, where the metre and the second are defined in terms of *c* and ΔV_{Cs} .

^{*)} X represents one or more digits to be added at the time the new definition is finally adopted.

$$N_{\rm A}h = \frac{\alpha^2 M(\rm e^{-})c}{2R_{\rm \infty}}$$

 $N_A h = 3.990 \ 312 \ 7110(18) \times 10^{-10} \ \text{Js/mol},$ with relative uncertainty of **0.45 × 10^{-9**

Amedeo Avogadro (1776-1856)

Max Planck (1858-1947)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Avogadro Constant

Definition of Avogadro constant N_A

- Number of molecules per mol
- 6.022... x 10²³ mol⁻¹

Current definition of mol

- Number "entities" like ¹²C atoms in 12 g
- i. e. 6.022... x 10^{23 12}C atoms have a mass of 12 g
 12 g/mol = N_A m(¹²C)
- Faraday constant $F = N_A e$ (e: elementary charge) Molar gas constant $R = N_A k$ (k: Boltzmann constant)

Counting Atoms: XRCD Method

Volume a_0^3 of the unit cell

Use of a silicon crystal!

1.

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Page 4 of 19

Lattice parameter measurement (INRIM)

 $d_{220}(2011)=192014712.67(67)$ am $d_{220}(2014)=192014711.98(34)$ am $u_r(2014) = 1.8 \times 10^{-9}$

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Page 6 of 19

Sphere Interferometer of PTB

Diameter results (2014)

 $u(volume) = 1.5 \times 10^{-8} V$

Molar Mass Determination

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

PB

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Mass

Mass measurements

- Extraordinary calibrations using the IPK
- Uncertainty of the weighted mean: 3.5 μg

Surface Characterisation

Physikalisch-Technische Bundesanstalt
 Braunschweig und Berlin

Nationales Metrologieinstitut Page 13 of 19

Surface layer measurement: XPS/XRF

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Page 14 of 19

Only one sphere (AVO28-S5c):

Quantity	Relative uncertainty/10 ⁻⁹	Contribution/%
Molar mass	5	6
Lattice parameter	5	6
Surface	10	23
Sphere volume	16	59
Sphere mass	4	4
Point defects	3	2
Total	21	100

Aim: Avogadro value with relative uncertainty below 1.5 x 10⁻⁸

Improvements:

- a) New XPS/XRF apparatus for spheres at PTB
- b) New XPS apparatus for spheres at NMIJ
- c) Spheres with better roundness (smaller wavefront abberration)
- d) New lattice parameter measurement at PTB
- e) Avogadro constant determined using Si-28 with higher enrichment

Existing Si-28 Single Crystals

AVO28

99.995%

99.998%

99.9995%

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Page 18 of 19

Thank you very much for your attention!

Questions?

Comments?

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Bundesallee 100 38116 Braunschweig Germany

Dr. Horst Bettin Working Groups "Solid State Density" and "Avogadro Constant" Telephone: +49 531 592-3330 E-Mail: horst.bettin@ptb.de