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What are waveforms and who cares?
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What is full waveform metrology?
Example: Oscilloscope response calibration

Old way: A few numbers (parameters) to describe response

 Bandwidth, amplitude, transition duration, overshoot
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Application: Digital signal test 
Different responses yield different results!
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Generator passed Generator failed

• Same device
• Two different oscilloscopes
• Same oscilloscope manufacturer specification (bandwidth) 
• Which measurement is correct?
• By one estimate 10% to 20% of 10 Gbit/s Ethernet transceivers 

erroneously rejected due to measurement errors, costing industry 
$200M/yr to $400M/yr on this product alone.

Why is full waveform metrology important?



Generator passed Generator failed

Why is full waveform metrology important?

• A fundamental measurement is needed to separate the effect of the 
source from that of the receiver



Full waveform metrology includes:
1. Response function traceability to fundamental 

physics
– Well understood and characterized measurement model

2. Impedance effects
3. Timing errors
4. Principled deconvolution
5. Errors are correlated  Covariance matrix-based  

or Monte-Carlo uncertainty analysis
– Analysis of the waveform at each point in the measured 

epoch, along with uncertainty at each point
– Allows propagation of uncertainty through a  linear 

transformation
– Fourier transforms, pulse parameters, etc.
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Quantities are generally complex and 
frequency dependent

D.F. Williams, et al., “Terminology for High-Speed Sampling-Oscilloscope Calibration,” 
ARFTG, Nov. 30-Dec. 1, 2006. 



Timebase errors
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P. D. Hale, et al., “Compensation of random and systematic timing 
errors in sampling oscilloscopes,” IEEE Trans. Instrum. Meas., 
vol. 55, no. 6, pp. 2146-2154, Dec. 2006.



Response traceability: Electro-optic sampling
• NIST, PTB, and NPL have EOS 

systems for waveform traceability, 
others in development

• Use electro-optic (Pockels) effect 
in LiTaO3 or GaAs, but other 
materials possible

• Phase delay between linear 
polarization states is proportional 
to the electric field

• Response time limited by phonon 
resonances and propagation 
effects

• Laser pulse duration and spatial 
extent also are limiting factors
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NIST electro-optic (EO) sampling system:
A THz sampling oscilloscope
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Oscilloscope response function
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EOS system
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Calibrate a photodiode impulse source

Use calibrated source to calibrate 
oscilloscope

Photo-
diode * Oscillo-

scope t Photo-
diode • Oscillo-

scope ffM(t) = M( f ) =

Convolution Solve by division, but often not that simple
T. S. Clement, et al., “Calibration of sampling oscilloscopes with high-speed photodiodes, ” IEEE 
Trans.  Microwave Theory Tech., Vol. 54, pp. 3173-3181 (Aug. 2006).



Putting frequency domain corrections 
together: Equivalent circuit model
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• D. F. Williams, et al., “Calibrating electro-optic sampling systems,” IMS , pp. 
1527-1530, May 2001.

• D. F. Williams, et al., “The impact of characteristic impedance on waveform 
calibrations,”  ARFTG, June 2013



Typical photodiode phase response
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T. S. Clement, et al., “Calibrated photoreceiver response to 110 GHz,” IEEE  LEOS, Nov. 10-14, 
2002, Glasgow, Scotland.



NIST traceability path for pulse measurements

PD

NIST EOS
On-wafer CPW

~1 THz BW 
<< 1 ps FDHM
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1.0 mm connector
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Calibration step-like 
pulse generators 

Td>10 ps

LCA

Uncertainties must be propagated for each step.
We do this with the NIST Microwave Uncertainty framework.



Dynamic measurement

1
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 Inverse problem:           
 Inverse problem is not an "easy" problem because small fluctuations 
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Dynamic measurement: One in which the physical quantity that is 
measured varies with time or space and where this variation has a 
significant effect on the estimate of the measurand and the 
associated uncertainty. 



If we are just interested in pulse duration…
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• Not true for general pulse shapes
• Used by most NMIs and third party calibration labs 

Simplification for Gaussian pulses: Root sum of squares 
(RSS), also known as quadrature sum
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• Simulated sources and 
oscilloscopes are Bessel-
Thompson, Butterworth, and 
Chebyshev; order 2-6

A. Dienstfrey and P. D. Hale, “Analysis for dynamic metrology,” Meas. Sci. Technol., 25 (2014) 
035001.
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NIST traceability path for modulated-signal measurements

PD
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Uncertainties must be propagated for each step.
We do this with the NIST Microwave Uncertainty framework.



Broadband Modulated-Signal Source
Millimeter-wave signal generation

– New broadband arbitrary waveform generators, fast SiGe technology

NIST techniques to calibrate generators with 
oscilloscope

– Internal response corrected, traceable to EOS
– Also correct time-base distortion and impedance effects



Millimeter-Wave Modulated Signals at 44 GHz
• Non-ideal AWG and upconverter
• Iteratively predistorted to make a 

source with low EVM

44 GHz, 64 QAM, 1 GS/s 

Final:
EVM=0.74%

Original:
EVM=8.54%
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K. A. Remley, et al., “Millimeter-Wave Modulated-Signal and Error-Vector-Magnitude Measurement with 
Uncertainty,” submitted to IEEE Trans. Microwave Theory Tech. 



0.74% EVM: How do we Know it is Correct?
The NIST Microwave Uncertainty Framework will tell us!

Drag and Drop measurement files to incorporate errors

 of source (VNA)

 of scope (VNA)

5 Repeats of waveform (scope )

Effects of cable bend (VNA)

Response of scope (EOS)
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• Histogram: Monte Carlo 
analysis of error 
mechanisms  for 1000 
simulations

• Continuous curve: 
Sensitivity analysis for 
each error mechanism 
separately

• NIST Microwave Uncertainty Framework finds uncertainty 
• Asymmetric distribution

K. A. Remley, D. F. Williams, P. D. Hale, C.M. Wang, J.A. Jargon, and Y.C. Park, “Modulated-Signal 
Measurements and Uncertainty in Error Vector Magnitude at Millimeter-Wave Frequencies,” 
submitted to IEEE Trans. Microwave Theory Tech.



Why is waveform metrology
NMI worthy?

• Waveform measurements used in all areas of 
engineering and science

• Effects of source and measurement system cannot be 
separated without fundamental standards 

• Full waveform metrology is multidisciplinary, requiring 
skills in microwave electronics, optoelectronics, 
microcircuit fabrication,  statistical signal processing, and 
inverse problems

• Complicated system, considerable investment

• Opportunity to unify industry through standardized and 
traceable metrology



EOS comparison between NIST, PTB, 
and NPL

• Will be first comparison of ultrafast, full-
waveform metrology

• Although using electro-optic sampling, the three 
systems use different approaches
Better validation

• Photodiode is being used as transfer artifact
• First step towards CMC in this area

P. D. Hale, D. F. Williams, A. Dienstfrey, J. Wang, J. Jargon, D. Humphreys, M. Harper, H. 
Füser, and M. Bieler, “Traceability of High-Speed Electrical Waveforms at NIST, NPL, and 
PTB,” Precision Electromagnetic Measurements (CPEM), 2012 Conference on,  pp.522-
523, 1-6 July 2012. 



Conclusions
• Full/complete waveform measurements are needed in all 

aspects of science and technology
• Fundamental traceability for high-speed electrical 

measurements is available through EOS
• Impedance and time errors must be included to obtain 

meaningful results
• A multivariate covariance-matrix and Monte-Carlo based 

uncertainty analysis allows for transformation between 
time and frequency domains, calculation of pulse 
parameter uncertainties, and propagation through 
multiple steps
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