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On logarithmic ratio quantities

The following notes describe how two different logarithmic ratio quantities may be recognised, both
of which are dimensionless, but for which the coherent derived SI unit is the neper in one case and
the bel in the other case.  It seems that this description of the situation accords closely with current
practice in the field.

I am writing this paper as background material for the recommendation (CCU-U1-8jun02) which
the CCU (the Consultative Committee for Units) plan to submit to the CIPM in October 2002.  The
CCU is concerned with units, whereas this paper is concerned with the quantities (in this case
logarithmic ratio quantities) for which the units neper and bel are used.  The definitions, names and
symbols for quantities are the province of such bodies as ISO/TC 12, ISO/TC 43 and IEC/TC 29,
but the definitions of these quantities are nonetheless relevant to the definitions of the neper and bel.

1.   Logarithmic amplitude ratio
The first logarithmic ratio measure of interest might be called logarithmic amplitude ratio, or log
arithmic amplitude decay (or gain).  This name might be abbreviated to logarithmic decay (or
gain), or even just decay (or gain), but in fact the word amplitude is an important part of the name.
I have used the symbol µ for this quantity in the equations that follow, for reasons discussed below,
but there may be other equally acceptable symbols.  This quantity is used only for pure sinusoidal
signals with exponential decay, represented for example by the equations

µ  =  ln(A/A0) (1)

where the signal is denoted by

x(t)  =  A cos(ω t), and   A  =  A0 exp(−γ t) .  (2)

ω denotes the angular frequency, t the time, A the amplitude, and γ the decay rate.  A0 is the value of
the amplitude A at time t = 0.  The independent variable may be distance rather than time. The
quantity µ is particularly used to represent the exponential decay or gain of a sinusoidal signal with
time or distance (decay along a transmission line being an example where the variable is distance).
The decay rate γ may be zero as a special case, but the quantity µ may still be used to express the
ratio of two amplitudes.

Significant points are:

• Logarithmic amplitude ratio is a dimensionless quantity, and it is always defined using a natural
(or Napierian) logarithm (in these notes ln denotes loge).

• Its coherent derived unit is one, but it is given the special name neper, symbol Np, so that we
write

µ  =  ln(A/A0) Np . (3)

• The name ‘level’, and symbol L, is sometimes used for this quantity, but I understand that they
are not used by those working in the field.  In these notes I have reserved the name ‘level’ and
symbol L for the quantities discussed in Section 2.

All of this is in accord with the paper by Mills, Taylor and Thor [1], except for the revised name of
the quantity, and the use of the symbol µ rather than L.  When equation (2) is written in the form
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x(t)  =  Re[A0 exp(−γ t+iω t)] (4)

we see the parallel relation between the units neper (for the logarithmic amplitude decay γ t) and
radian (for the phase angle ω t).  This relation between the neper and the radian is emphasised in the
paper by Mills et al. [1].

Equation (4) implies that x(t) is a generalized single-frequency signal, with complex frequency
(ω+iγ).  It is important that the logarithmic amplitude ratio be limited to signals of this type.

2.   Mean square signal level and power level
The other logarithmic ratio measures of interest are those formed from the various power-like
quantities that commonly arise in acoustics, and also in other applications such as signal processing
and telecommunications.  They fall into two groups.

One group should really be called the mean square signal level, for example the mean square
sound pressure level in acoustics. The words mean square are often omitted in this name, so that
the quantity is simply called the signal level or sound pressure level, but the average of the square
of the signal over a suitably chosen time window is always implied.  These quantities are defined by
the equations

LX  =  lg(X/X0) , (5)

where  X  =  <p2>. (6)

The quantity p(t) is the sound pressure as a function of time in acoustics, or the signal (for example
voltage) as a function of time in other applications.  The conventional reference value X0 in
acoustics is taken to be (20 µPa)2.

The other group consists in acoustics of the mean sound power level, LP, the mean sound
intensity level, LI, and the sound exposure level, LE.  The quantities sound power, sound intensity,
and sound exposure are inherently quadratic in nature, so there is no reference to ‘square’ in their
name, as there was in the first group. However, the mean power and intensity are still defined as
averages over a specified time interval.  In practice the adjective ‘mean’ is commonly omitted in
these two names, which thus become sound power level and sound intensity level. Note that
sound exposure is defined as an integral of the squared pressure over time, and no further time
averaging is required.

The defining equations equivalent to (5) and (6) are:

LP  =  lg(P/P0) (7)

LI  =  lg(I/I0) (8)

LE  =  lg(E/E0) (9)

where in these equations P and I denote the mean power and mean intensity, and E denotes the
sound exposure, in each case defined over an appropriate time interval.  The conventional reference
values for these quantities are P0 = 10−12 W,  I0 = 10−12 W/m2,  and  E0 = 1 Pa2 s.

All the quantities (5) through (9) share the general characteristic that their underlying signals
typically contain many different frequency components, rather than being confined to a single
frequency.  It is thus not possible to define an amplitude associated with any of these quantities,
which are not repeating functions.  The name level and the symbol L are appropriate and are
commonly used for all these quantities. The reference value, denoted with a subscript 0, must be
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specified to give meaning to the level L for any of these quantities (although it is often taken by
convention as stated above, and may not be explicitly mentioned).  In some applications the signal
is ‘time-stationary’, so that the mean square value averaged over a suitable time interval is the same
whenever it is taken; in other applications the signal is a decaying (or fluctuating) function of time,
so that as the time window over which the average is taken moves forwards in time the mean square
value changes.  But for decaying free oscillations from some initial excited state, for example the
sound field in a reverberant room, the decrease will not generally be exponential, because different
Fourier components decay at different rates.

• It is customary to use a decimal logarithm in the defining equations (5), (7), (8) and (9). (In
these notes lg denotes log10.)  The level L is always a dimensionless quantity, and when it is
defined as in equations (5) through (9) its coherent derived unit is one, but it is given the special
name bel, symbol B.  However its submultiple the decibel, dB, is much more commonly used,
so that we may write

LX  =  lg(X/X0) B  =  10 lg(X/X0) dB (10)

with similar equations for LP, LI and LE in (7) through (9).

• There is no relation between the bel and the radian analogous to that between the neper (for
logarithmic amplitude decay) and the radian (for phase angle).  Thus the analogy exists between
the radian and the neper, but there is no corresponding analogy between the radian and the bel.
This is because there is no amplitude that can be defined for these functions, as there is for
logarithmic amplitude ratio in equation 2.

3.   Relation between the neper and the bel
Since the neper and the bel (or decibel) are used for two different kinds of quantity, one can only
obtain a relation between these units by relating the quantities.  In practice, however, as noted above
it is not generally possible to define a sinusoidal signal amplitude associated with a mean square
signal level, mean square sound pressure level or mean power level, etc., so that in general L and µ
cannot be related.  The only exception occurs for a pure sinusoidal signal, for which the mean
square signal X corresponds to half the square of the amplitude A.  In this case we may average the
square of  x(t) = A cos(ω t)  to obtain  <x2> = (1/2)<A2>, because <cos2(ω t)> = 1/2.  Thus in this
special case we arrive at the relation

X  =  (1/2) A2     and hence   X/X0 = (A/A0)2 (11)

where I have written A2 for <A2>.  This leads to the relation between LX and µ :

LX  =  lg(X/X0)  =  2 lg(A/A0)  =  (2/ln 10) ln(A/A0)  =  (2/ln 10) µ (12)

Thus if  LX = 1 B,  then     µ = (ln 10)/2 Np =  1.151 293 Np (13)

This is sometimes described by saying that  1 B = (ln 10)/2 Np, but since the bel and the neper are
units of different quantities it is perhaps better to express the relation as in (13).
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4. Comment
It is a rule of the International System that for any given quantity there is only one coherent SI unit.
It may seem that in the procedure described in sections 1 and 2 we have defined two different
coherent units, the neper and the bel, for the same quantity.  Although both quantities are
dimensionless, and both are defined as the logarithm of a ratio, the differences described in Sections
1 and 2 support the argument that they are different quantities.  They are normally used in different
circumstances.  They can only be related in the special case described in section 3.

There are precedents for recognising two slightly different quantities, as suggested here, despite the
fact that they are defined in a somewhat similar way.   Thus for example angular velocity, dθ/dt,
and frequency, f or ν, are commonly regarded as different quantities, each having a different
coherent derived SI unit, radian per second (rad/s) for the former and hertz (Hz = s−1) for the latter.
Yet it is sometimes convenient to relate these two quantities by the equation

dθ /dt  =  2πf (14)

Some would argue that angular velocity and frequency are really the same quantity, and that we
have contrived to break the rule by having two different coherent derived units for the same
quantity.  Underlying this are two different ways of defining plane angle, one leading to the radian
as the unit and the other to the revolution.  We have lived with this situation for many years, and it
does not seem to cause problems.  We find it convenient to recognise the two different quantities,
each with its own coherent derived SI unit.  Similarly in the case of logarithmic ratio, I suggest in
this note that it is convenient and customary to recognise two different quantities as described in
sections 1 and 2, each with its own coherent derived unit, the neper and the bel.  It seems to me that
with this approach we might reach agreement between all parties with an interest in this subject.

It is important to use names that clearly distinguish the two different kinds of quantity described in
sections 1 and 2.  In these notes I am using the name logarithmic amplitude ratio for the quantity
described in section 1, which is characterised by a single frequency, and for which the coherent unit
is the neper.  I am using the name level, or mean square signal level, or mean power level etc. for
the quantities described in section 2, for which there is no single frequency and for which it is not
possible to define an amplitude, and for which the coherent unit is the bel.  This is in accord with
current practice in so far as I have been able to determine.

Ian Mills,   8 June 2002

[1]   I M Mills, B N Taylor and A J Thor, Metrologia 2001, 38, 353 – 361.
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Appendix:

On the mathematical definition of the quantities for which the neper and the bel are units

It is sometimes argued that the radian may be understood as a dimensionless derived unit, in
contrast to the neper, because the angle θ of which the radian is a unit may be defined as the ratio of
two lengths.  The lack of a similar definition of the quantity of which the neper is a unit is then said
to inhibit its interpretation as a dimensionless derived unit.

This appendix is added to demonstrate that the radian and the neper may both be described as
having analogous geometrical interpretations.

The function in equation (4) is of the type

F  =  r exp(iθ + ϕ)

If we define a circle by the parametric equations

x  =  r cos θ

y  =  r sin θ

where r exp(iθ)  =  r cosθ + i r sin θ ,

then θ may be defined as the (shaded area)/r2 in the diagram in figure 1.

Similarly if we define a hyperbola by the parametric equations involving the hyperbolic functions

x  =  r coshϕ

y  =  r sinh ϕ

where r exp ϕ  =  r cosh ϕ + r sinh ϕ ,

then ϕ may be defined as the (shaded area)/r2 in the diagram in figure 2.

The figures are attached as a .pdf file.

Thus the both of the quantities θ and ϕ, which in our application are the phase angle and the
logarithmic amplitude decay, may be given a geometrical interpretation in terms of the
dimensionless ratio of two areas, related to a circle and a hyperbola respectively.  When θ and ϕ are
defined in this way, the radian is the value of θ when θ = 1, and the neper is the value of ϕ when ϕ
= 1.  This geometrical argument may help to support the picture that the radian and the neper may
both be interpreted as dimensionless derived units.

I am indebted to Christian Bordé and Jean Kovalevski for drawing my attention to this geometrical
interpretation of the radian and the neper.
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Figure 1.   If the circle is defined parametrically by the equations

x = r cos θ ,    y = r sin θ

where r is the radius of the circle, and the angle θ is measured in radians, then the area of the circle
is πr2.  If the angle between the two bounding radii of the shaded area is  2θ, then the shaded area is
θ r2.  Thus the (shaded area)/r2 = θ.
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Figure 2.  If the hyperbola is defined parametrically by the equations

x = r cosh ϕ ,    y = r sinh ϕ

so that the distance from the origin to the nearest point on the hyperbola is r, then it may be shown
that the shaded area is equal to  ϕ r2.  Thus the (shaded area)/r2 = ϕ.


