A few considerations on measurement uncertainties expressed in dB

Noé Razo, Rogelio Amezola, Alfredo Elías División de Vibraciones y Acústica Centro Nacional de Metrología (CENAM) Querétaro, México

• Case of sound pressure level (SPL)

By definition, at a given frequency for a sound source

$$x_{\rm SPL} = 20 \log \left(\frac{P}{P_{\rm ref}}\right)$$

to which a measurement uncertainty is associated, so you may say

$$x_{SPL} = x_{\text{measured}} \pm u_x$$
; $k=1$

 $x_{\text{SPL}} = x_{\text{measured}} \pm 2u_x$; k=2or equivalent $x_{\text{SPL}} = x_{\text{measured}} \pm U$; k=2

However,

- what is the measurand?
- What is the expression for u_x

• Since
$$u_x$$
 may be expressed as $u_x = 20 \log \left(\frac{P^*}{P_{\text{ref}}^*}\right)$; what is P^*_{ref}

If acoustic pressure is the measurant, then

$$x_{\rm SPL} = 20 \log \left(\frac{P \pm u_p}{P_{\rm ref}} \right)$$

then, there are upper and lower bounds given by

$$x_{\rm SPL}^{+} = 20 \log \left(\frac{P + u_p}{P_{\rm ref}} \right)$$
$$x_{\rm SPL}^{-} = 20 \log \left(\frac{P - u_p}{P_{\rm ref}} \right)$$

take the upper bound,

$$\begin{aligned} x_{\rm SPL}^{+} &= 20 \log \left(\frac{P + u_p}{P_{\rm ref}} \right) \\ x_{\rm SPL}^{+} &= 20 \log \left(\frac{P}{P_{\rm ref}} + \frac{u_p}{P_{\rm ref}} \right) \\ x_{\rm SPL}^{+} &= 20 \log \left(\frac{P}{P_{\rm ref}} \left(1 + \frac{u_p}{P} \right) \right) \\ x_{\rm SPL}^{+} &= 20 \log \left(\frac{P}{P_{\rm ref}} \right) + 20 \log \left(1 + \frac{u_p}{P} \right) \end{aligned}$$

then,

 $x_{\text{SPL}} = x_{\text{measured}} + u_x$; k=1

- what about for a coverage factor k = 2?
- Is it $x_{SPL}^+ = x_{measured} + 20 \log \left(1 + \frac{u_p}{P}\right)^2$? Is this a deviation from the GUM?

or

* Is it
$$x_{SPL}^+ = x_{measured} + 20 \log \left(1 + \frac{2u_p}{P}\right)$$
?

- What if a larger coverage factor *k* is needed?
- Central limit theorem applies to measurements of acoustics pressure P but does not for measurements of SPL (¿?)
- Values of $u_r = u_p/p > 0.1$ would lead to sever overestimations of u_x .

Remark

Make your uncertainty estimations using SI units or use relative uncertainties. After that, transform your uncertainty estimation to dBs.