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Confidence levels and confidence intervals
for key comparisons to facilitate MRA decisions

A.G. Steele, B.M. Wood, R.J. Douglas

Abstract
Confidence interval methods are presented as important tools for facilitating and describing decisions based on
comparison data. We illustrate their utility for associating an acceptance criterion with its corresponding assured
confidence level.  In this paper we analyze comparison data expressed in standard form using the Quantified
Demonstrated Equivalence (QDE) approach, and also evaluate the probability of agreement within a specified range.
The availability and use of new Excel tools are discussed as a practical means of adding rigour to the many decisions
needed for MRA Appendices B and C. For acceptance into Appendix C of the MRA, examples are given that
illustrate quantifying equivalence demonstrated by comparisons, and confidence imputed to expert opinion.

1. Introduction

In this paper, we express inter-laboratory comparison results as confidence intervals, and show how confidence
interval methods can complement traditional null hypothesis testing. Confidence intervals can be particularly helpful
in making and describing comparison-based decisions recently added to the tasks of international metrology.

We consider some of the new tasks created by the CIPM Mutual Recognition Arrangement [1]. The tasks are
based on certain Key Comparisons that have been, and will continue to be, selected and performed. Laboratories
measure a circulated artefact, and each reports its measurement and standard uncertainty [2]. The Key Comparison
reports are used as evidence of equivalence of measurements made in participating laboratories.

For making decisions with Key Comparison data, null hypothesis testing has some identified deficiencies that can
be remedied with confidence interval interpretations such as Quantified Demonstrated Equivalence (QDE) [3]. The
QDE formalism was developed specifically to deal with the realities of inter-laboratory comparisons. The procedure
takes as input two measured values, two uncertainties and a confidence level (e.g. 95%). Its output is a single
parameter: the interval expected to contain 95% of re-measurements (i.e. repetitions of the full comparison), centred
on the end-user expectation of agreement. QDE has an established theoretical development, and it is easily calculated
for all cases of practical interest. It can be applied equally to bilateral comparisons and to comparisons with the so-
called Key Comparison Reference Values (KCRVs). Perhaps most importantly, it is a single-parameter interpretation
of a comparison that focuses entirely on expressing the demonstrated agreement in a way that can be clearly
expressed to non-experts [4,5].

We develop the confidence interval formalism further to describe the probability for agreement, on a specified
interval, between any two results in a Key Comparison. This Quantified Demonstrated Confidence (QDC) approach
takes as input two measured values, two uncertainties and a specified interval, again centred on the end-user
expectation of agreement. The output is the probability (confidence level) that a repetition of the comparison would
give a difference that falls within the specified interval.

New computational simplifications are presented for calculating both of these expressions of agreement: the
confidence interval (for confidence levels other than 95%) and the confidence probability within a specified interval.
These single-parameter descriptions are most appropriate when demonstrated agreement is the paramount concern of
a discussion: a comparison that reveals a difference of the means that is many times larger than the combined
uncertainties can still be used as supporting evidence for equivalence at a sufficiently lower level of accuracy. Thus
even an extreme outlier in a Key Comparison, located many of its standard uncertainties away from the KCRV or the
values of the other participants, can be used rigorously to demonstrate rigorously an associated Appendix C
measurement capability claim, provided that this claim has an appropriately larger uncertainty.

For multilateral comparisons with a large number of participants, a spreadsheet ‘toolkit’ has been prepared to
simplify and automate the tasks of creating the “full bilateral equivalence array” used to summarize Key Comparison
data.  It performs all of the confidence level and confidence interval calculations, as well as a number of other
statistical functions, and is designed for use from within Microsoft Excel spreadsheets [6]. The toolkit is freely
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available by contacting the authors for a copy. It can be customized locally, or used “as is”, to present data in the
MRA Excel format and to support acceptance decisions. This paper is not intended as a detailed description of the
toolkit, although it uses use the toolkit in describing and illustrating the QDE formalism for facilitating MRA
decisions.

After presenting the background and computational methods of the analysis, several examples are presented
using recent comparison data. Calculations show the confidence intervals for agreement between pairs of
measurements at both the 95% and the 68% confidence levels.  As well, the use of QDC  is discussed as an evaluation
tool for accepting a given Institute's claimed capability in the Appendix C database.

2. Decisions within the Context of the MRA

The CIPM Mutual Recognition Arrangement (MRA), signed in 1999, formally began a process of measurement
comparison, evaluation and organized mutual recognition of national measurement standards and calibration
capabilities [1]. Results of Key Comparisons are summarized in a growing online database called Appendix B of the
MRA. The Key Comparisons are generally published in the open literature and results are made available within the
database in support of the recognized calibration and measurement capabilities that are approved for entry in a
second part of the database called Appendix C of the MRA.

At present, the databases in Appendices B and C are still largely unpopulated. Thousands of decisions are being
made, and each will be revisited over the years as further information becomes available. Pre-agreed criteria and
procedures, such as now exist for some aspects of Key Comparisons, could facilitate the decision-making process,
but debate continues about interpreting comparison results and about quantifying the degree of equivalence. The
accumulated intra-laboratory experience of metrologists is being extended to deal rigorously with these formalized
inter-laboratory comparisons. But the intra-laboratory practices of data pooling and outlier rejection, which have
been a routine but informal part of self-evaluation, are not rigorously established as being applicable to the processes
of choosing an inter-laboratory mean and excluding some laboratories from Appendix C.

For the MRA, the degree of equivalence between two measurement standards is expressed quantitatively by two
parameters that are determined experimentally in a Key Comparison: the difference between the measured values
and the uncertainty of that difference. It is a probabilistic form that uses the ISO Guide to the Expression of
Uncertainty in Measurement [2] norms for uncertainty. It is the canonical two-parameter form of the bilateral
agreement demonstrated either by two laboratories in a Key Comparison, or of one laboratory to a Key
Comparison’s reference value.

There can be important but subtle differences in interpretation when pooling inter-laboratory data compared to
pooling data within one laboratory. Inter-laboratory comparisons raise new issues not usually addressed in
established intra-laboratory practices. Similarly, the development of consensus for standards concerning descriptions
of correlations in inter-laboratory measurement comparisons has only just begun.

Perhaps constrained by experience within their own laboratories, metrologists are still expressing a significant
variety of opinion concerning the requirements of the MRA, the need for interpretation criteria for the MRA, and the
final acceptance into Appendix C of the MRA.

3. Key Comparisons and Appendix B: the KCRV

The fundamental technical basis for the MRA is found in the international comparisons, organized for each major
area of metrology, that explore the equivalence of the principal techniques of measurement realized by different
National Metrology Institutes (NMIs). These Key Comparisons are each conducted by a CIPM Consultative
Committee (CC), and will usually lead to hundreds of inferred bilateral comparisons between the tens of laboratories
participating in a Key Comparison.

For some less critical purposes, a usefully simplified description of a Key Comparison will be used with its “Key
Comparison Reference Value” (KCRV) to summarize the Key Comparison in terms of the tens of laboratory
differences with respect to the KCRV. The KCRV is expected to be a good, but not necessarily the best,
representation of the SI value of the comparison. To date, comparisons have used many simple methods for
determining a KCRV, including the mean, the median, and the value of the pilot (or another participating) laboratory.
The KCRV may be averaged equally over all laboratories, or weighted unequally, or restricted to laboratories with
independent realizations of the unit. Even with a particular method chosen, the data for some Key Comparisons
naturally requires more than one KCRV. Furthermore, each of the first round of Key Comparisons is envisaged as
being followed by an unending series of similar Key Comparisons, spaced some years apart. The Consultative
Committees face a continuing and extensive stream of data to be considered and reconsidered.
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The MRA Appendix B database also contains a two-dimensional matrix, providing the bilateral degrees of
equivalence between each pair of participating NMIs. This is the most complete summary of the Key Comparison,
and includes all pair differences and the corresponding pair uncertainties, calculated by the technical experts. In
general, this matrix cannot be calculated using only the information contained in the simple table of degrees of
equivalence with respect to the KCRV, since there are often correlated components within the various uncertainty
budgets.

Many problems can be avoided by the choice of an appropriate statistic or representative value for the KCRV and
its uncertainty, uKCRV [7]. Explicitly specifying their definitions and any associated assumptions can simplify the task
of interpreting and using these quantities. The Appendix B submission format [8] requires a complete description of
both the KCRV and uKCRV, and includes a table of equivalence that lists the laboratory differences from the KCRV,
and the uncertainty of this difference. It is up to the pilot laboratory, in consultation with the Key Comparison
participants and perhaps the full Consultative Committee, to determine the appropriate methods for determining the
KCRV and uKCRV.

4. Interpretation of Key Comparison Data

Within a single laboratory, approximations deliver computational simplicity, rules of thumb supplement detailed
analysis, and the power of intuition gained through experience is employed. These approaches, while still very useful
for completing the intra-laboratory part of the analysis, have not yet demonstrated a corresponding applicability for
comparisons between laboratories: neither for inter-laboratory comparison analysis, nor for the decision-making
process which may result in a laboratory being excluded from Appendix C.

Easily understood quantitative measures such as confidence are helpful both in this discussion and in describing
conclusions to other parties. In particular, quantified expressions of confidence concerning equivalence facilitate
communication with the targeted audience for Appendix C, which lies almost wholly outside the community of NMI
metrologists. For Appendix C acceptance decisions, quantification is desirable to describe the relative “weights”
given to (i) Appendix B Key Comparisons, and (ii) supplementary expert opinion relying on other information not
contained in these comparisons.

We believe that the simple probability calculus of QDE and careful attention to the ‘ownership’ of the probability
distributions can be used to clarify and quantify discussions of equivalence through the use of the joint confidence
for replicating a result within an interval. The joint confidence is an integral over the joint probability distribution
describing the two results. In the context of this joint distribution, it can be helpful to remember that each laboratory
expresses its own opinion as a marginal probability distribution and that a description of correlations is only
convincing when both parties agree. There will be at least two parties’ opinions reflected in the construction of the
joint distribution, and the pilot laboratory might add a third, and the reader, re-examining the comparison, could
become a fourth party (e.g. a fourth-party proposal to add an uncertainty component to fix a ‘failed’ comparison).

To compare results from a Key Comparison, each laboratory’s measured mean value, with its associated
uncertainty, is considered as representing a separate (and in the absence of explicit correlation information,
independent) probability distribution to be preserved throughout the analysis. QDE preserves the measured
difference of the mean values, appropriately expanded by the stated uncertainties, rather than expending it on a weak,
one-sample, test of the stated uncertainties (as is done in conventional null-hypothesis testing). QDE can be
determined for any comparison that reports uncertainties following the ISO Guide to the Expression of Uncertainty
in Measurement [2]. QDE can determine and present a confidence interval for agreement based on the two
laboratories’ general distributions, although they will usually be specified as a difference of the means and a standard
uncertainty. The convolution of the two independent distributions, Pp(z) = P1(z1) ⊗  P2(z2), expresses the probability
distribution of two values differing by z. Pp(z) is centred at the difference in the means of the two distributions, rather
than being centred at zero. Symmetric integration of the convolution about zero yields the probability, or confidence
C, that each laboratory will report the same value within the integration limits of a confidence interval [-dC,  +dC].
This confidence interval is conceptually similar to an expanded uncertainty but is taken symmetrically about the
reader’s expectation that the values should agree (i.e. z=0), rather than about the experimental difference. The
confidence interval for a particular confidence C is determined by solving Equation 1 to obtain dC.
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In cases where correlations exist, the combination of the two distributions to form Pp(z) is no longer a simple
convolution, but the probability calculations are not computationally difficult. For normal distributions, correlations
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between the uncertainties of the two laboratories, u1 and u2, can be fully described by the pair uncertainty up
 using the

correlation coefficient r12:    up
2 = (u1

2 + u2
2 – 2r12u1u2).

Statisticians from both the Bayesian and frequencist schools must all believe that Equation 1 holds true: a
confidence level is an integration over a probability distribution within a specified interval. Equation 1 may be
solved for the confidence level, C%, given a particular confidence interval dC. It can also be solved for the
confidence interval, dC, given a confidence level C%.

4.1 Confidence within any Interval

The confidence interval formalism, developed for QDE, can be used [9] to address the conventional question: “In
any specified interval, what level of confidence for agreement has been demonstrated by the results for two
laboratories in a comparison?” Note that this question is concise and seeks an interval centred on the expectation of
bilateral agreement between two specified results, and does not require either the pooling of results or the null
hypothesis. When applied to the usual case of uncertainty budgets reported as normal distributions, the solution is
simply expressed using the error function, erf(x), defined in Equation 2 and used to evaluate the Gaussian integral.

∫ −=
x t dte(x)

0

22
erf

π
(2)

To construct the probability that one laboratory’s claim, represented by m1 ±  ku1, includes another value,
represented by m2 and possibly another uncertainty u2 , we first construct the probability for the difference as a
convolution: a normal distribution centered at m1−m2, with standard deviation up. As usual, up is the pair uncertainty
and is made up of both uncertainties: up

2 = u1
2 + u2

2  – 2r12 u1u2 , where r12 is the correlation coefficient between the
two uncertainties. The probability is the integration from − ku1 to + ku1 of the distribution, and Equation 2 gives the
answer by shifting origin and scale.

Using the expanded uncertainty U1=ku1 in the calculation makes this expression directly comparable with other
statistics which are generally used when summarizing data. Note that the pair uncertainty up enters the expression as
a standard deviation, but the interval [−U1, +U1] is based on one laboratory’s claimed expanded uncertainty, in this
case ku1. Usually, k  would be 2, and, for uncertainty budgets which conform to the ISO Guide [2], it must be
specified explicitly if k ≠ 2.

The resulting expression for the probability that a repeat of the comparison would have m2′ that falls within
[m1′−ku1, m1′+ku1] is the Quantified Demonstrated Confidence (QDC), given in Equation 3.
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In Equation 3, the arguments of the error functions mean that the confidence level depends on the difference in
values, the uncertainty of that difference, and the laboratory’s uncertainty claim. Note that the confidence level is
different for the two laboratories when u1 ≠ u2 ; this is one reason why direct comparisons cannot produce convincing
conclusions about the validity of the uncertainty claim of the laboratory having the smaller uncertainty value. Note
also that when u1 = u2 , in the absence of correlations, 84% is the highest confidence that can be demonstrated for
agreement within ±2u1 .

The discussion so far has explicitly focussed on the quantified demonstrated confidence for agreement between
two laboratory values in a Key Comparison, but the same line of reasoning can be used to calculate QDC  for a
laboratory and the KCRV: to do so, we simply take m2 = KCRV and u2 = uKCRV.

Equation 3 is easily extended to include travel uncertainty in up , and to use other intervals (an MRA Appendix C
claim, for example u1′, in place of u1 in Equation 3 - although u1 must still be used when calculating up for the
comparison).

4.2 Evaluating Confidence Intervals

Equation 1 may be solved for a given confidence level, C%, to obtain the associated confidence interval, dC. In
keeping with the common practice of reporting an expanded uncertainty at the 95% level of confidence (about k=2
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for normal distributions), the particular solution for C= 95% in Equation 1, d0.95, has been investigated in detail [3].
This d0.95, the Quantified Demonstrated Equivalence at the 95% confidence level is denoted by QDE0.95. It may be
calculated with the convenient approximation formula shown in Equation 4, using the following coefficients:
ao(0.95) = 1.645; a1(0.95) = 0.3295; a2(0.95) = 4.05.

QDEC% ≈   |m1–m2| + {a0(C) + a1(C) × exp [–a2(C) × (|m1–m2|)/up]  } up (4)

This expression has been extended for use as an approximation to the general solution of Equation 1 for a wide
range of confidence levels C. Appendix A contains a table of coefficients suitable for use with Equation 4 to
determine confidence intervals for C in the range from 0.995 to 0.40, along with a description of the limitations on
the approximation formula and a discussion of techniques for generating more precise solutions.

Of particular interest is the Equation 4 approximation with the parameters for C=0.68, which closely corresponds
to the standard (k=1) uncertainty for a normal distribution. In this case, the coefficients are: a0(0.68) = 0.468;
a1(0.68) = 0.554; a2(0.68) = 2.669.

It may prove appropriate to use QDE0.68, or QDE for some other confidence level, rather than QDE0.95 in
assessing Appendix C claims when the confidence demonstrated by a comparison is to be supplemented with other
information or expert opinion. Even if 95% confidence is regarded by some NMIs as an appropriate confidence level
for approval, they may still wish to use QDE for a lower confidence level and give a quantified weight to other
information or expert opinion. Sometimes this is unavoidable: for some Appendix C entries, there will be no directly
applicable Key Comparison, and decisions will have to rely on expert opinion and other information. The C=99.5%
coefficients, used in evaluating the QDE0.995 confidence interval, are useful when preparing expanded uncertainty
claims of equivalence at k=3, such as might be wanted by an instrumentation manufacturer writing performance
specifications.

The QDE0.68 and QDE0.95 quantified demonstrated equivalence intervals are useful in graphical representations of
comparison data for making rapid visual assessments of equivalence, in the same fashion that k=1 and k=2 error bars
are normally used. For normal uncertainty distributions, comparison data pairs plotted with either of these two
particular QDE “error bars” (derived from that pair difference and pair uncertainty) will always overlap each other’s
mean value. Notice that QDEC% , like any confidence interval, has the same dimensions as the quantity in the
comparison; the confidence level or probability, C, is a dimensionless fraction, just like any other probability.

5. A Confidence Interval Software Toolkit

Spreadsheet applications are widely used for quick analysis and summary of the results of Key Comparisons
performed by NMIs. The BIPM has demonstrated the use of Microsoft’s spreadsheet, Excel, in preparing
submissions for the MRA Appendix B database, and has circulated a preliminary template to simplify the task of
summarizing the results of a Key Comparison in a format suitable for the database [8].

Excel is oriented towards the general spreadsheet user, rather than to the metrologist, although it contains an
extensive library of statistical and engineering functions that many scientists routinely use to prepare raw data into
graphs and tables. To address special needs, it has some useful customization capabilities. By using the built-in
Visual Basic programming environment, it is possible to bring the best of general spreadsheet convenience to the
new extensive analyses required for the MRA. We have used this capability to create a toolkit of functions and
macros that handle the repetitive tasks associated with evaluating Appendix B data, including particular
implementations of confidence intervals for agreement [6].

The toolkit automates aspects of preparation and analysis for Key Comparisons, such as those given below. It can
help in preparing MRA Appendix B degree of equivalence tables. It will evaluate confidence intervals (QDE) at a
wide range of specified confidence, or evaluate the demonstrated confidence (QDC) for specified intervals. It
organizes and presents them to support the important class of MRA Appendix C decisions that have a directly
analogous Key Comparison. In its present form, the toolkit does not offer this level of probability calculus support
for less directly supported Appendix C decisions, where careful chains of probabilistic inference from multiple Key
Comparisons have to be linked (e.g. length and time for acceleration) and/or combined with intra-laboratory
ratiometric uncertainty budgets (e.g. evaluating a 1 kV Appendix C claim using a 10 V Key Comparison and expert
opinion about ratiometric practices in the laboratories).

Where calibration and measurement capability listings are supported by comparison data, and for data analysis of
Key Comparisons, we believe that the automation provided by this type of toolkit will prove helpful, particularly in
coping with the inevitable last-minute additions, changes, and corrections. The toolkit facilitates the exploration of
the consequences of different methods for determining the KCRV or its uncertainty. The toolkit can expedite future
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review and revision as new Key Comparisons, multilateral regional comparisons, and bilateral comparisons are
completed.

Some candidates for the KCRV, such as the median and the arithmetic mean are included as built-in functions in
Excel, and other statistics used in metrology have been added in the toolkit. One addition is a common choice for
evaluating the KCRV: the weighted mean, where each laboratory value weight is the inverse of the square of the
corresponding standard uncertainty. In addition to this predefined weighted mean function,  we have found it useful
to have a more general function with “editable weights”, that takes as its input a column of values and a column of
uncertainties. Weights are initialized to the reciprocals of the squares of the uncertainties, and normalized to unity. It
evaluates the inverse-variance-weighted mean, which with normal uncertainty distributions provides the optimal
choice, in a minimum-uncertainty sense, for the KCRV in a comparison where the values and the uncertainties are all
considered to be credible.

This tool also handles the cases where a cutoff is to be used to limit either large uncertainties or large weights for
purposes of calculating the KCRV. This is done interactively by allowing the user to edit the weight for any
laboratory affected by the cutoff. Setting the weight for a given laboratory to zero has the effect of excluding this
“outlier” from the evaluation of the KCRV without affecting in any way the submissions of that laboratory from other
Key Comparison results. Setting a maximum allowable weight can be used to choose a consensus value for the
KCRV that is not dominated by a single laboratory with a dramatically superior uncertainty claim. The KCRV  can be
chosen to suit the pilot laboratory’s convenience, and the traceability of a particular KCRV to the SI can be
established relative to the independent realizations published in the Key Comparison Report.

With the toolkit an Excel user can easily transform simple tabular data for an N-laboratory comparison into its
full N × N bilateral degree of equivalence array, displayed in the BIPM-suggested format [8]. Each element of the
array describes the bilateral comparison between a pair of laboratories, giving both the pair difference and the pair
difference uncertainty. The full two-dimensional form is convenient to use for addressing bilateral equivalence with
the tightest justified range. The full array is necessary especially if there are any significant inter-laboratory
correlations to treat, and is usually included in the Appendix B database submission for the Key Comparison. This
array approach eliminates the intermediary role of the KCRV for interlaboratory equivalence.

Key Comparisons presented in the BIPM database are normally to be given in a simple form (giving comparison
results relative to the KCRV) as well as the full array of bilateral comparisons (which does not require a KCRV).
Those who seek simplicity in the comparison of each laboratory with the KCRV may have difficulty properly
assessing the correlation effects imposed by the fully correlated uncertainty in the KCRV. If the KCRV uncertainty is
included rigorously by adding it in quadrature (less the fully correlated part) to each of the laboratory uncertainties,
the resulting tables and graphs are unsuitable for their primary purpose of assuring bilateral equivalence. To achieve
this purpose, the user of this “simplified” data is required first to remove the fully correlated uncertainty in the
KCRV, subtracting it in quadrature. If they really cannot be persuaded to use the full array, we believe that these
readers’ need for simplicity could be served best by assigning an uncertainty of zero to the KCRV  (i.e. setting
uKCRV=0) when interlaboratory differences are to be reconstructed from the difference with respect to the KCRV.
(Note that a graph of comparison data shown as deviations from a KCRV which has non-zero uncertainty is
unsuitable for deducing laboratory-to-laboratory bilateral degrees of equivalence.) We would suggest giving an
uncertainty to the SI value of the KCRV only in the context of comparisons with the independent realizations and any
future reinterpretations of these Comparisons. Nonetheless, the toolkit can handle either choice.

The programming for the macro which generates a full N ×  N bilateral equivalence array from a table of
comparison data is straightforward for other programmers to use as a template to automate preparation of any other
N × N array. The program itself is documented with this role in mind. We have found it easy to implement
calculation of bilateral quantities, such as the one-parameter QDE0.95 confidence interval for agreement, or the
QDC (k) demonstrated equivalence probability. These applications of confidence intervals and confidence levels are
discussed in more detail in the next Section, using data taken from a real comparison. More complex calculations,
such as explicitly including any common, correlated uncertainty component (such as a travel uncertainty for the
comparison, or the uncertainty due to a prescribed correction formula that may take on different values for different
participants), or making use of available correlation coefficient matrix information, are being implemented in the
toolkit. We are also adding graphing tools that are useful in presenting Key Comparisons.

Confidence interval calculations can also be made with respect to the KCRV (determined in various ways), using
the KCRV uncertainty (also attributed in various ways) and expressed in an N × 1 table for any particular choice of
KCRV and uKCRV. We have found it convenient to use the toolkit to treat simultaneously a number, n, of candidate
KCRVs, either as n separate N × 1 arrays or by appending them as n additional rows (and/or columns) to the N × N
array. The toolkit includes a pair uncertainty module that can accommodate correlation coefficients. It can populate a
full two dimensional degree-of-equivalence array, which might have many hundreds of entries, from a Key
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Comparison list of a few tens of differences, uncertainties and correlation coefficients.  These arrays, along with the
associated graphs, are straightforward to understand and use, and the consequences of inter-laboratory correlations
are properly reflected in the degree of equivalence entries. Although correlations with the KCRV need to be handled
on a case-by-case basis when determining the MRA degree of equivalence, the QDE0.95 and QDC(k) functions have
been automated for use with correlation coefficients.

The utility of automated calculation is best illustrated with examples. The toolkit facilitates the generation of the
two-parameter form of the degree of equivalence and its translation into a quantitative confidence for agreement with
another laboratory (or agreement with a KCRV) within an interval. Given the interval, the confidence can be
calculated; and given the target confidence, an interval can be calculated. We have found this to be a powerful tool in
guiding deliberations concerning comparisons.

6. Examples of Confidence Interval Analysis

Key Comparisons are being conducted under the auspices of the BIPM Consultative Committees in order to
determine the degree of equivalence between various NMIs for all of the principal measurement techniques in each
of the major metrology areas. Two notions of equivalence are introduced by the MRA. Firstly, the MRA defines the
degree of equivalence between a laboratory and the KCRV as the difference between them, and the expanded (k=2)
uncertainty of the difference. Secondly, between two laboratories the MRA bilateral degree of equivalence is
similarly defined to be the difference in their respective comparison values, and the expanded (k=2) uncertainty of
that difference. Confidence intervals can be calculated in either approach: for all NMIs relative to the KCRV, or the
KCRV can be bypassed and confidence intervals calculated for all bilateral pairs of NMIs.

The first notion, equivalence to the KCRV, may be useful in assessing the global consistency demonstrated by a
Key Comparison. Tables listing the degree of equivalence to the KCRV are included in the MRA Appendix B
database that summarizes the results of Key Comparisons. It is sometimes problematic to define a universally
accepted KCRV for a given comparison, and the toolkit can support a multiplicity of candidate KCRVs until the most
appropriate one is chosen.  Furthermore, even when there is little or no debate about the methodology for
determining the KCRV, the uncertainty in the KCRV, uKCRV, often requires careful handling when making further
calculations in order to eliminate the effects of correlations with the uncertainties of each of the laboratory values. In
practice, the utility of these Key Comparison reference quantities will be limited to the context in which they are
intended, as a simple summary of a complicated experiment.

The second notion, the bilateral degrees of equivalence between each pair of participating NMIs, is the
equivalence idea of chief practical interest to the participating metrologists, since the vast majority of trade and
equivalence issues arefundamentally bilateral. It is also often of paramount concern for those reviewing the
calibration and measurement capability claims submitted for inclusion into the MRA Appendix C database, since the
bilateral equivalence is the clearest description of the consequences arising from one NMI accepting another NMI’s
claim. Also, it is the ultimate technical reassurance that metrology can offer for any specific question on equivalence
that has not blindly pooled NMIs. The full bilateral array of these degrees of equivalence is also included in the
MRA Appendix B database, where the convention is to express (row-column) differences, and the uncertainty of that
difference, in each array element. Both parts of this array are antisymmetric, since swapping laboratories leads to a
simple change of sign for the difference, and +⁄−up = −(−/+up) . (Usually the + and – uncertainties are the same and
only the magnitude of the uncertainty will be reported so that the uncertainty part will be written to appear to be
symmetric.)

We illustrate these ideas by considering in some detail one example typifying a comparison with no major
anomalies. The comparison is abstracted from the thermometry literature, where it has not excited commentary as
being untypical in any way [10]. For our purposes we may almost ignore the fact that it is a comparison drawn from
a particular field: the unit of measurement (the kelvin) has been retained to aid clarity, but the discussion would be
the same for most other quantities. The experiment consisted of making temperature measurements of a travelling
mercury fixed-point cell, and comparing against the local mercury fixed-point standard. The results were
summarized in the natural manner: as a table of the differences (Tlab - Tcirc) and the expanded uncertainties (with k=2)
of the differences. To build the analogy with a Key Comparison, the triple point temperature of the circulating
artefact would probably be a candidate for the KCRV in this study.

It is often the case that the KCRV is calculated as an aggregate statistic determined from the experimental data,
rather than being associated with a specific element. For this data set, the median deviation is 0.00 mK, the average
deviation is −0.03 mK, and the weighted average (using the experimental uncertainties to determine the weights) is
−0.01 mK. The consistency of these values with each other is one indication that there is no significant cause for
concern with the data set, and that we should feel free to use any one of them as the KCRV. The fact that the
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magnitude of these aggregate quantities is so close to zero is indicative of the high quality of the circulating artefact
and the consistency among the participating laboratories. Since we believe that the weighted mean will prove to be
the most common statistical choice for a reference value in comparisons where the laboratory values and
uncertainties are all deemed credible, we will use this as the KCRV (adjusting the published table of values
accordingly) in the remainder of our examples. With this fictitious assignment of a “KCRV”, the data shown in the
left side of Table 1 can be regarded as typical for an international comparison. According to the MRA, a degree of
equivalence table includes the difference between the laboratory value and the KCRV, as well as the uncertainty of
this difference.

6.1 Analysis with uKCRV = 0

In this example we consider the KCRV to have been chosen as the weighted mean described above, and take uKCRV =
0, which means that the raw laboratory uncertainties are listed directly in the table. For completeness we have listed
both the standard uncertainty and the expanded (k=2) uncertainty.

If the KCRV is viewed from the perspective of a traceable reference to be used for documenting the SI value of
each laboratory, an assignment of uKCRV = 0 appears unjustifiable. However, it is justifiable within the confines of
discussion concerning the equivalence of laboratories to each other, rather than their equivalence to the SI. If the
compact form of Table 1 is to be used, taking uKCRV = 0 can be a useful simplification for KCRV-based presentations,
particularly where travel uncertainty is small (and the uncertainty of the KCRV is fully correlated for each
laboratory). It is also useful when authors wish to avoid difficulties that their readers may experience in accounting
for correlations in deducing bilateral comparisons between laboratories from comparisons with the KCRV. Further,
assigning uKCRV = 0 is a technique for communicating a CC’s belief that a particular KCRV  has no lasting physical
significance as a record of the SI reference of the comparison.

Table 1.   Comparisons of Laboratories with respect to a KCRV, with uKCRV=0.
Left: Comparison data summarized by the Degree of Equivalence to the KCRV, also showing the standard uncertainty.
Middle: Confidence intervals for agreement of the laboratory value V and the KCRV, at 68% and 95% levels of confidence.
Right: QDC(k=2), the demonstrated confidence that a laboratory value includes the KCRV in its expanded (k=2) uncertainty claim.

Lab
Name

Vi-KCRV

(mK)

ui(k=1)

(mK)

Ui(k=2)

(mK)

QDE0.68

(mK)

QDE0.95

(mK)
QDC(k=2)

Lab1 0.01 0.13 0.25 0.13 0.26 95%

Lab2 0.01 0.14 0.28 0.14 0.28 95%

Lab3 0.03 0.10 0.19 0.10 0.21 94%

Lab4 -0.09 0.08 0.16 0.13 0.22 82%

Lab5 0.13 0.09 0.17 0.18 0.28 70%

Lab6 -0.11 0.11 0.22 0.16 0.29 85%

Lab7 0.18 0.13 0.25 0.25 0.40 72%

Lab8 0.13 0.12 0.23 0.19 0.33 81%

Lab9 -0.02 0.15 0.30 0.15 0.30 95%

Lab10 -0.08 0.16 0.32 0.18 0.35 93%

Lab11 -0.41 0.16 0.31 0.48 0.67 30%

The participants have each measured the same artefact, and reported their measured value and its uncertainty. The
results are summarized relative to the KCRV in the table. These data are also shown as the solid symbols in Figure 1,
with error bars representing both the standard uncertainty u(k=1), and the expanded uncertainty U(k=2).  In this
analysis, because we have taken uKCRV = 0, the usual “visual inspection” of the compatibility of each laboratory
result with the KCRV would be done by checking to see whether or not the k=1 or k=2 error bars cross the KCRV
zero-line. Graphical presentation of the degree of equivalence easily displays both parameters (difference and
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uncertainty), and it is tempting to display the QDE intervals as well. We have done so in two ways, in Figure 1a and
in Figure 1b. These presentations differ only in the positioning of the mid-point of the QDE confidence interval: in
Figure 1a, the plot is from the perspective of the individual laboratories; in Figure 1b, the plot is from the perspective
of the KCRV. Both presentations are correct in that these confidence intervals are each centred on the concept of
equivalence: which can be centred either on the Laboratory value or on the KCRV.

Figure 1.   Plots of the degree of equivalence with respect to the KCRV for the data summarized in Table 1. The k=1 and k=2 uncertainties are
shown as error bars on the solid symbols. The QDE0.68 and QDE0.95 confidence intervals are shown in the lighter colour as error bars on the open
symbols.
Figure 1a.  Table 1 Comparison Data and QDE intervals of the eleven laboratories with each interval centred on its laboratory mean.  This shows
each laboratory’s view of its agreement with the KCRV. Note that these QDE intervals always cross the KCRV line.
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Figure 1b. Table 1 Comparison and QDE intervals relative to the KCRV. The QDE intervals show the agreement intervals of the eleven
laboratories with the KCRV. Note that this is the same information as plotted in Figure 1a, but with the confidence intervals centred on a common
international perspective rather than Figure 1a’s eleven national perspectives of the KCRV. Note also that these QDE intervals always encompass
the laboratory value.
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In choosing to use a graph to display the one-parameter QDE confidence interval, it may be necessary for
metrologists to help readers troubled by the two different choices. It is important for a reader to remember that a
QDE interval is not anchored at a particular SI value, but at the concept of agreement between two things. It can
never be “wrong” to plot the QDE intervals around a particular measurement of either party to the agreement.
Figures 1a and 1b are both correct, yet each is subject to misinterpretation if the equivalence intervals are considered
simply as error bars. QDE intervals are inherently a shared opinion of the two parties, and are always symmetrically
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centred on ideal agreement; the graphs in Figure 1 represent the projection of this concept onto the value of one party
or the other. This opinion is a shared one, even when the comparison is between a laboratory value and a KCRV.

If the unfamiliarity of QDE presentations in Figure 1 creates doubts in the minds of any of our clients, we may
revert to the form of Table 1: it is in tables and in words that the QDE formalism is least subject to misinterpretation.
However, comparisons interpreted solely with respect to a KCRV are susceptible to a more serious failure of analysis.
The greatest weakness of this form of comparison, i.e. using the KCRV as an intermediary, is through an explicit or
implicit claim of bilateral equivalence between laboratories A and B just because they are individually equivalent to
the KCRV.  Given that A and B individually meet a specific test for equivalence to the KCRV, in general one cannot
deduce that A and B meet the same test for agreement with each other.

For example, consider the specifics for Lab 4 and Lab 5. Each of these participants agrees with the KCRV well
within their respective k=2 expanded uncertainty claims, and they very nearly agree with the KCRV to within their
standard k=1 uncertainty claim. Their differences with respect to the KCRV are similar in magnitude, but have
opposite signs: Lab 4 lies below the KCRV, while Lab 5 lies above. Based on this type of “graphical” analysis of
their performance in the Key Comparison, it is unlikely that many metrologists would question the measurement
capabilities or the uncertainty claims of either of these participants: they have done quite well, and both may claim to
“agree with the KCRV”. Yet their k=1 uncertainty bars do not touch each other, and a bit more doubt would exist
about their equivalence to one another. The bilateral evaluation of QDC  can quantify the confidence level for
agreement demonstrated between participants of the comparison, using the differences and uncertainties.

As discussed in Section 4.2, the QDE formalism can be used to evaluate a confidence interval within which each
laboratory value will agree with the KCRV given the pair uncertainty. The middle portion of Table 1 provides these
intervals at confidence levels of 68% and 95%, evaluated using the data in the left portion of Table 1 and Equation 4
with the appropriate coefficients. It is convenient to display these intervals graphically, as has been done in Figure 1a
with open symbols. In a manner exactly analogous to showing the k=1 and k=2 uncertainties, the QDE0.68 and
QDE0.95 confidence intervals are shown there as error bars centred on each laboratory’s value. It is worth reflecting
on precisely what this form means: relative to each laboratory, the bars represent the confidence interval within
which the KCRV could be expected to be found if the laboratory repeated its measurement after randomizing all
uncertainty components in its uncertainty budget. As such, it is a laboratory-centric view of the comparison and the
KCRV.

The first thing to note about Figure 1a is that these QDE intervals always cross the KCRV line. This would be true
for all other QDE intervals with confidence >50%, calculated for agreement between each laboratory value and the
KCRV. Secondly, one might note the non-linearity in the underlying (normal) distributions that is evident in the
relative size of the 68% and 95% confidence intervals: when the laboratory value does not coincide with the KCRV,
the 68% confidence interval is noticeably more than half the size of the 95% confidence interval. This is seen most
clearly in the data set for Lab 11 in the table and the graph, where QDE0.68 is almost three-quarters the size of
QDE0.95. Contrast this ratio for the QDEs of a normal distribution offset from zero, with the case of a normal
distribution centred on zero (typically representative of an individual laboratory uncertainty statement, for example)
where the standard k=1 uncertainty (~68% confidence) is half the size of the expanded k=2 uncertainty (~95%
confidence).

Returning to the specific examination of Lab 4 and Lab 5, Table 1 may be used to read off their respective
QDE0.68 and QDE0.95 confidence intervals with respect to the KCRV: 0.13 mK and 0.22 mK for Lab 4 and 0.17 mK
and 0.27 mK for Lab 5. These intervals incorporate both the difference from the KCRV and the uncertainty into a
single parameter that quantitatively answers the question of how well a laboratory’s claimed value agrees with the
KCRV. For this specific question one must consider both sources of possible disagreement: the difference in value
and the uncertainty. For a laboratory whose two sources are comparable, i.e. their value differs from the KCRV by
about one standard uncertainty, then the 68% confidence interval for agreement is about twice that amount. This is a
rigorous consequence of probability calculus centred on the postulated agreement, and a laboratory’s conviction that
a repeat of its measurement is best described by its stated mean and stated uncertainty.

The QDE approach scrupulously preserves the mean and standard uncertainty as separate entities and combines
their effects to answer specific questions about equivalence within a specified interval. Most other common
approaches do not leave this expert opinion intact, but generally try to supplant it with a pooling assumption; in these
approaches the comparison is essentially regarded as a weak one-sample test of an assumed zero deviation within the
stated uncertainty (the null hypothesis test). With enough repetition, this null hypothesis type of test can become a
very useful approach to evaluating the completeness of the combined standard uncertainty, but from our perspective
it has often proved to be a poor approach to interpret infrequently repeated Key Comparisons and equivalence,
leading only to weak statements of confidence in equivalence and to unnecessary contention.
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As one example of the unnecessary contention, consider the case of a laboratory that has just failed the null
hypothesis test at the 95% confidence level, and in consequence is threatened with not being listed as they wish in
Appendix C of the MRA. Since up to 1 in 20 laboratories are expected to fall into this category, even if absolutely
nothing is wrong, laboratories in this circumstance can be expected to mount an energetic campaign for special
treatment.

Proponents of null hypothesis testing could debate what they might regard as double counting in the QDE
approach, which rigorously separates treatment of the uncertainty and the difference of the means. They might be
tempted to regard the measured difference as no more than a single instance of the pair uncertainty. This perspective
is founded on the uncritical substitution of the measurement expert’s opinion (that a repeated measurement is
expected to be distributed around the stated mean value) with an unwarranted pooling hypothesis (that a repeated
measurement from this laboratory is expected to be distributed around the stated KCRV). As a hypothesis, the pooled
interpretation might possibly be tested rigorously with enough repetition. In practice, NMIs do not have the resources
to repeat a Key Comparison enough times. The mean would have to be tested to within a small fraction of the stated
uncertainty to justify replacing a laboratory’s stated mean with the KCRV. Null hypothesis testing’s need for
repetition and the infrequency of Key Comparisons place them at opposite poles of the metrological world.

The last column in Table 1 summarizes the demonstrated confidence, expressed as a percentage, that each
laboratory will include the KCRV within its claimed k=2 uncertainty. It is not surprising that QDC(k=2) = 95% for
Lab 1 and Lab 2, which have reported a value virtually equal to the KCRV. For Lab 4 and Lab 5, who report
differences from the KCRV comparable to their k=1 standard uncertainty, the demonstrated confidence fractions are
82% and 70%, respectively, which most could feel comfortable accepting. The value of the quantification of
confidence is perhaps best illustrated using the results for Lab 11, which has reported a difference from the KCRV of
almost three standard uncertainties. In this case, QDC (k=2) falls off sharply to only 30%. These QDC numerical
figures of merit have been calculated with the same rigorous probability calculus as QDE, to express the confidence
for agreement with the KCRV within ±2u, taking into account the complete information (both the value and the
uncertainty) supplied by each participant.

For the purposes of comparing any laboratory to the KCRV, summary tables such as Table 1 are sufficient. To
summarize the laboratory-to-laboratory bilateral degrees of equivalence, one needs to use the full, antisymmetric,
bilateral degree of equivalence table. The CCQM has adopted a form that meets the needs of chemical metrology [8].
An alternative form that is more self-explanatory to physical metrologists is shown in Table 2. In either form, it is a
compact summary of all the demonstrated bilateral equivalences for a given experimental comparison. In Table 2,
the MRA degree of equivalence is included in the above-diagonal array elements: calculated as the difference
between the laboratory values (row – column) and the uncertainty of this difference (the pair uncertainty). Below the
diagonal, the 95% confidence interval, QDE0.95, for agreement between two laboratories is included (in italics). Since
the full MRA-style array is antisymmetric, no information has been lost by including the QDE0.95 values in this
presentation.

In this illustrative example calculation, the uncertainties in Table 1 have been taken to be uncorrelated when
evaluating the laboratory-to-laboratory pair uncertainty. Handling the case of any identified correlations is not
difficult, using any specific correlation information provided in the preferred form of interlaboratory correlation
coefficients in the Key Comparison report. This presentation of the comparison data makes possible a quick review
both of the differences between participants and of the 95% confidence interval within which they are reporting the
same value.
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Table 2.   Bilateral Degree of Equivalence and QDE0.95 array for the data summarized in Table 1. All entries are in mK.

Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Lab8 Lab9 Lab10 Lab11
Lab
1

- 0.00
± 0.38

-0.02
± 0.31

0.10
± 0.30

-0.12
± 0.30

0.12
± 0.33

-0.17
± 0.35

-0.12
± 0.34

0.03
± 0.39

0.09
± 0.41

0.42
± 0.40

Lab
2 0.37 - -0.02

± 0.34
0.10

± 0.32
-0.12

± 0.33
0.12

± 0.36
-0.17

± 0.38
-0.12

± 0.36
0.03

± 0.41
0.09

± 0.43
0.42

± 0.42
Lab
3 0.31 0.33 - 0.12

± 0.25
-0.10

± 0.25
0.14

± 0.29
-0.15

± 0.31
-0.10

± 0.30
0.05

± 0.36
0.11

± 0.37
0.44

± 0.36
Lab
4 0.35 0.37 0.33 - -0.22

± 0.23
0.02

± 0.27
-0.27

± 0.30
-0.22

± 0.28
-0.07

± 0.34
-0.01

± 0.36
0.32

± 0.35
Lab
5

0.37 0.39 0.31 0.41 - 0.24
± 0.28

-0.05
± 0.30

0.00
± 0.29

0.15
± 0.34

0.21
± 0.36

0.54
± 0.35

Lab
6

0.40 0.42 0.38 0.27 0.47 - -0.29
± 0.33

-0.24
± 0.32

-0.09
± 0.37

-0.03
± 0.39

0.30
± 0.38

Lab
7 0.46 0.48 0.41 0.51 0.31 0.56 - 0.05

± 0.34
0.20

± 0.39
0.26

± 0.41
0.59

± 0.40
Lab
8 0.40 0.42 0.35 0.45 0.28 0.50 0.35 - 0.15

± 0.38
0.21

± 0.39
0.54

± 0.39
Lab
9 0.39 0.40 0.36 0.36 0.44 0.40 0.52 0.46 - 0.06

± 0.44
0.39

± 0.43
Lab
10

0.44 0.45 0.42 0.35 0.51 0.38 0.59 0.53 0.44 - 0.33
± 0.45

Lab
11

0.75 0.76 0.74 0.61 0.83 0.61 0.92 0.86 0.74 0.70 -

Looking at the row for Lab 4 in Table 2, and moving across to the column for Lab 5, the bilateral MRA degree of
equivalence, i.e. the difference between their values and the expanded k=2 uncertainty of this difference, for this pair
of participants is –0.22 ± 0.23 mK, which shows that the two laboratories agree within their mutual expanded
uncertainty by only a very small amount. The corresponding QDE0.95 entry for this pair is found by locating the
column for Lab 4 and moving down to the row for Lab 5: QDE0.95(Lab4,Lab5) = 0.41 mK . Note that it is always
possible to calculate the QDE0.95 interval (or any QDEC% interval) for agreement at the 95% confidence level, even
when the values do not “overlap” within the error bars.

In order to demonstrate the utility of QDC(k=2), the complete bilateral demonstrated confidence array has been
tabulated in Table 3. Note that it is not symmetric, since the laboratory uncertainty claims are different from each
other. The full QDC (k=2) matrix quantifies the confidence which one should construe that Lab (row) and Lab
(column)  will agree within Lab (row)’s k=2 claim.

Table 3. Table 1 Bilateral Confidence array for QDC(k=2) . Each entry gives the confidence level for reproducing agreement between Lab i (row)
and Lab j (column) within the Lab i   (row) k=2 expanded uncertainty claim.

Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Lab8 Lab9 Lab10 Lab11
Lab1  - 83% 88% 84% 80% 78% 68% 77% 80% 75% 22%
Lab2 86%  - 89% 86% 82% 80% 71% 79% 82% 77% 25%
Lab3 77% 75%  - 73% 76% 65% 60% 71% 71% 63% 10%
Lab4 61% 59% 61%  - 31% 76% 23% 33% 61% 63% 18%
Lab5 62% 61% 71% 37%  - 33% 72% 77% 54% 42% 2%
Lab6 70% 68% 70% 89% 44%  - 34% 45% 71% 74% 34%
Lab7 68% 67% 74% 47% 88% 43%  - 84% 61% 49% 5%
Lab8 73% 72% 80% 55% 89% 50% 81%  - 66% 55% 7%
Lab9 86% 85% 89% 90% 80% 85% 69% 77%  - 81% 34%
Lab10 84% 83% 86% 93% 72% 90% 61% 70% 84%  - 48%
Lab11 31% 32% 26% 50% 12% 54% 10% 14% 37% 48%  -

Once again it is interesting to consider the specific case involving Lab 4 and Lab 5. Above it was shown that they
each agree quite well with the KCRV. Here, the demonstrated confidence that each of these participants includes the
other’s value within their respective expanded uncertainty claims (and taking explicit account of the pair uncertainty)
has been evaluated to be only about 35%. This reflects the fact that the two values, although both only about one
standard uncertainty away from the KCRV, are on opposite sides of this baseline. This was also apparent in their
bilateral MRA degree of equivalence, which had a difference in value equal to the (k=2) uncertainty of that
difference. In terms of the “normalized error”, the ratio of the difference to the expanded uncertainty which is often
used in null hypothesis testing, this pair of laboratories would have scored En(Lab 4, Lab 5) = 0.96. This score,
although close to the nominal cutoff for acceptability, would normally lead to a statement indicating that Lab 4 and
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Lab 5 are “equivalent”. In contrast, the use of QDC(k=2) has shown that there is only a small probability that these
two laboratories agree within their respective uncertainty claims, and serves as a strong warning about the quality of
judgements which may be made when using more traditional acceptance criteria.

6.2 Subtleties of Analysis with uKCRV  ≠  0

We turn next to the case where the KCRV has a non-zero uncertainty assigned to it and where this has been accepted
by the responsible Consultative Committee. In some Key Comparisons, uKCRV will be evaluated as the combined
standard uncertainty of the data used to construct the KCRV itself. Such a choice for uKCRV would describe the
expected reproducibility of the KCRV under specified assumptions regarding correlations between laboratories and
between repetitions. In other comparisons, uKCRV might be taken as the standard deviation of the comparison data to
describe the breadth of the overall pooled distribution. In still other comparisons, uKCRV might be dominated by a
travel uncertainty, which is evaluated during the comparison itself. Where the KCRV is chosen to be the value of the
pilot laboratory, uKCRV may logically be taken as the pilot laboratory uncertainty. For each of these cases, a detailed
description of uKCRV is required for the complete report on the Key Comparison, and the Consultative Committee
might well also document the appropriate uses of the particular uKCRV.

One of the subtleties with a non-zero uKCRV is the issue of correlations between the uncertainty components used
by the different laboratories. The subtleties do not necessarily complicate things. For example, in any situation where
uKCRV is deemed to be completely correlated with all of the participants, the bilateral analysis of equivalence is
identical to the case where uKCRV is taken to be identically zero. This uncertainty cancels out during the evaluation of
the pair uncertainty due to the fact that a difference between two values is being calculated. The lab-to-lab quantities
such as the bilateral degree of equivalence, QDE0.95 and QDC(k=2), remain invariant. This would be the case for a
comparison where the uncertainty in the KCRV is dominated by a single instance of an uncertain quantity. As an
example, consider the uncertainty in the Josephson constant relative to the SI definition of the volt, which would be
the same for all laboratories – i.e. fully correlated in uncertainty, with correlation coefficients of +1 for this
uncertainty component. In describing the uncertainty in this way, it is important that the readers are all made aware
of the change of sign required when using the correlation coefficient in a difference compared to using it in a sum:
up

2 = u1
2 + u2

2 – 2 r12u1u2 for a difference V2 –  V1, and up
2 = u1

2 + u2
2 + 2 r12u1u2 for a sum  V1 + V2.

6.3 Analysis with  uKCRV as the Formal Uncertainty of the Inverse-variance Weighted Mean

To illustrate calculations with an explicit uncertainty assigned to the KCRV, we use the same comparison data listed
in the left-hand part of Table 1, but take uKCRV = 0.03 mK. This value is equal to the combined standard uncertainty
of the weighted mean as calculated above, and is obtained by taking the quadrature sum of the laboratory
uncertainties with the appropriate weighting factors. Table 4 lists the confidence intervals and demonstrated
confidence for agreement with this new KCRV, exactly as was done in the middle and right-hand portions of Table 1.
Figure 2 provides the same graphical summary of the data as Figure 1, but now includes dotted lines to indicate
uKCRV. The calculation of the pair uncertainty used for the error bars in the figure has also changed to include the new
value for uKCRV, but the laboratory uncertainty claims as listed in Table 1 remain unaltered.
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Table 4. Confidence for the comparison of Table 1, but with uKCRV = 0.03 mK. QDE0.68 and QDE0.95 are the intervals within which the laboratory
value and the KCRV agree, at 68% and 95% levels of confidence. QDC(k=2) represents the demonstrated confidence that the laboratory values
include the redetermined, “smeared out”, KCRV within their expanded (k=2) uncertainty claims.

Lab

Name

QDE0.68

(mK)

QDE0.95

(mK)
QDC(k=2)

Lab 1 0.13 0.26 95%

Lab 2 0.14 0.28 95%

Lab 3 0.11 0.22 93%

Lab 4 0.13 0.23 80%

Lab5 0.18 0.29 68%

Lab 6 0.17 0.30 84%

Lab 7 0.25 0.41 71%

Lab 8 0.20 0.34 80%

Lab 9 0.15 0.30 95%

Lab 10 0.180 0.35 92%

Lab 11 0.48 0.68 30%

Figure 2.  Table 1 equivalence with respect to a KCRV with uKCRV=0.03 mK (indicated by the dotted lines). The data points are the same as in
Figure 1a, but t he error bars now include the small but non-zero uncertainty of the KCRV. The error bars represent the combined laboratory and
KCRV uncertainties, with coverage factors of k=1 and k=2 (dark lines, solid symbols). Note that this presentation of the data is unsuitable for
making judgements about the bilateral degree of equivalence. The QDE0.68 and QDE0.95 confidence intervals for agreement with the KCRV  (light
lines, open symbols) are also shown, and take account of the uncertainty in the KCRV.
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This uKCRV is substantially smaller than the uncertainty of any one laboratory, and would describe the expected
variation in the KCRV  if the Key Comparison were to be repeated with all influence parameters fully randomized. If
the participants have identified the reproducibility part of the uncertainty, the CC could reasonably choose to use this
even smaller uncertainty for the KCRV, and for the laboratory uncertainties. Explicitly accounting for the
unavoidable correlations could further reduce up, the pair uncertainty between any one laboratory and the KCRV [7].
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6.4 Analysis with uKCRV  as the Standard Deviation of the Participants from the KCRV

The Consultative Committee might instead decide to use uKCRV to describe the width of the pooled distribution of
laboratory results, determined perhaps from the external standard deviation. With our example data set, the standard
deviation of the data points is 0.16 mK with 10 degrees of freedom (taking the Laboratories’ results to be
independent). Such an approach might appear attractive if the repeatability-of-the-KCRV approach discussed in the
previous section is felt to be misleadingly narrow, and has a rigorously justifiable interpretation that will be
described below. Table 5 lists the confidence intervals and demonstrated confidence for agreement using this uKCRV,
as was done in Table 1, for infinite degrees of freedom.

We have also used the Welch-Satterthwaite estimate of the degrees of freedom for the pair uncertainty
distribution (Lab i versus the pool). For the eleven participants it ranges from 14 to 41. When the explicit degrees of
freedom are considered [3], the QDE0.95 estimates of Table 5 are increased by less than 9%. We can also use the
stated standard uncertainties in forming the pool estimate. When the pooled distribution (the sum of the eleven
normal distributions, each centred on its own mean as revealed in the Key Comparison) is explicitly created,
convoluted and integrated, the QDE0.95 estimates of Table 5 increase by less than 25%.

Figure 3 shows the data of Table 5 in the same graphical summary as Figures 1a and 2. The calculation of the
pair uncertainty used for the error bars in the figure includes the new value uKCRV=0.16 mK, but the laboratory
uncertainty claims as listed in Table 1 remain unaltered.

There is a rigorous interpretation attached to this approach. The pooled distribution is not intended to describe the
reproducibility of the KCRV for a fully randomized repetition, but rather for a similar and fully complete repetition of
the Key Comparison. Nor does this  uKCRV attempt to estimate the uncertainty with respect to the SI. In that case, one
would have to include the uncertainty of the thermodynamic temperature of the triple point of mercury among other
things.  Instead, this wider distribution is attempting to describe the reproducibility of a measurement drawn
randomly from the pool of Laboratories that participated in the Key Comparison. The imagined repetition is a
bilateral comparison between the laboratory in question, and an anonymous, randomly chosen, second participant.

With this non-negligible uKCRV, all of the confidence intervals, at both the 68% and 95% levels of confidence,
have increased in comparison to the values in Tables 1 and 2. The increase is the direct result of increasing up, which
now includes a non-zero contribution from uKCRV. The QDC(k=2) values for all of the participants except Lab 11
have decreased, again due to the increase in the pair uncertainty. Lab 11, which differs from the KCRV  by almost
three of its own standard uncertainties, has benefited from the “smearing out” of the KCRV, and the demonstrated
confidence has increased from 30% to 35%. Unfortunately the increased confidence is still quite low, and a price has
been paid by all of the other participants. The highest cost has been paid by the laboratories which agreed most
closely, and had the smallest difference in value from the KCRV: the demonstrated confidence that might be claimed
for Lab 1 has dropped from 95% to 79% as a result of increasing uKCRV from 0.00 mK to 0.16 mK.

The increased uncertainty weakens confidence most for laboratories demonstrating “better” overlap with the
KCRV, and does little to help the “worst” laboratory. The lab-to-lab results, included in the bilateral arrays of Section
6.1, remain unaffected, under the assumption that uKCRV is fully correlated. We believe that the KCRV should have
little or no general relevance outside of the scope of the Key Comparison report. In this context, the example shows
the quantitative effect of not attributing an uncertainty to the reference value. It quantifies how much, and which,
NMIs lose and gain. This example argues against the suggestion that uKCRV might be artificially inflated to “rescue”
Laboratories with outliers in the comparison by this subtle variant of guardbanding.
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Table 5. Confidence for the comparison of Table 1, but with uKCRV = 0.16 mK. QDE0.68 and QDE0.95 are the intervals within which the laboratory
value and the KCRV agree, at 68% and 95% levels of confidence. QDC(k=2) represents the demonstrated confidence that for a similar
measurement, the laboratory values include, within their expanded (k=2) uncertainty claims, the value from a randomly chosen  contributor to the
KCRV.

Lab

Name

QDE0.68

(mK)

QDE0.95

(mK)
QDC(k=2)

Lab 1 0.21 0.41 79%

Lab 2 0.21 0.42 81%

Lab 3 0.19 0.38 70%

Lab 4 0.20 0.39 57%

Lab5 0.24 0.44 55%

Lab 6 0.22 0.43 67%

Lab 7 0.29 0.53 63%

Lab 8 0.25 0.47 67%

Lab 9 0.22 0.43 83%

Lab 10 0.23 0.47 82%

Lab 11 0.51 0.78 35%

Figure SEQ ARABE3.  Table 1 equivalence with respect to a KCRV with uKCRV=0.16 mK (indicated by  the dotted lines). The data points are the
same as in Figure 1a and Figure 2, but the error bars now include the larger uncertainty of a randomly chosen contributor the KCRV. The error
bars represent the combined laboratory and KCRV uncertainties, with coverage factors of k=1 and k=2 (dark lines, solid symbols). Note that this
presentation of the data is unsuitable for making judgements about the bilateral degree of equivalence. The QDE0.68 and QDE0.95 confidence
intervals for agreement with the KCRV  (light lines, open symbols) are also shown, and take account of the uncertainty in the KCRV.
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7. Confidence Interval Analysis for Appendix C Submissions

For a more typical Appendix C evaluation, the appropriate calibration service uncertainty claims from each
laboratory (which may be different from their Key Comparison uncertainty given in Appendix B) would be used to
calculate the confidence matrix summary of the Appendix B Key Comparison. Note that each laboratory is most
interested in its horizontal row (here, others’ acceptance of its own Appendix C claim) and its vertical column  (its
acceptance of others’ claims).
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In order to construct a defensible acceptance criterion for use when evaluating Appendix C calibration and
measurement capabilities, one might consider using this application of the QDE formalism and calculate the
probability that a laboratory’s measurement includes the KCRV within the expanded uncertainty associated with its
Appendix C claim.

In this scenario, it would be up to the individual NMIs, within each of the Regional Metrology Organizations
(RMOs), to determine their “cutoff” level of confidence, below which Appendix C claims will be returned to the
submitting Institute for re-analysis and review. A criterion for acceptance can be stated clearly, evaluated rigorously,
and applied uniformly. An example of such a statement follows.

At (our NMI), for services directly related to Appendix B Key Comparisons, we accept an
Appendix C claimed UCAL provided the Key Comparison demonstrated confidence within ±UCAL for
agreement with the KCRV is at least x%.

 i.e. QDC(k=2,Lab,KCRV) > x%

Each NMI can instead use its own realization rather than the KCRV as its arbitrating reference. This is a policy
decision with technical, political and legal overtones, and the use of one’s own standard simplifies most of these
issues. Acceptance criteria may well be the subject of debate with the RMO or Consultative Committee. For all the
constituent bilateral acceptance agreements, the most defensible choice is an NMI’s own standard, making no
reference at all to an external reference quantity (the KCRV) which may have been calculated using input data from
several other laboratories who are not party to the particular bilateral agreement being considered. In this case, a
statement of the acceptance criterion might read as follows.

At (our NMI), for services directly related to Appendix B Key Comparisons, we accept an
Appendix C claimed UCAL provided the Key Comparison demonstrated confidence within ±UCAL for
agreement with our value as reported in the Key Comparison is at least x%.

 i.e. QDC(k=2,Lab, our NMI) > x%

Once an NMI or RMO has chosen a value (C=x%) for its minimum demonstrated confidence, the toolkit makes it
easy to evaluate Appendix C claims if there is a corresponding Key Comparison in Appendix B. This subset of
Appendix C claims is important. The technical foundations of the MRA require that the principal techniques in each
area of metrology be fully investigated experimentally. It is therefore vitally important that the claims for this special
subset of cases should be reviewed and analyzed completely and rigorously.  In this context, the toolkit simplifies the
use of confidence levels (QDC) and confidence intervals (QDE) to examine the consistency and values of the choices
for x% made by other NMI’s and RMO’s. With confidence quantifies in this way, decisions can be explained clearly
to users for whom the MRA databases are being created.

7.1 Quantifying Confidence Assigned to Expert Opinion

It is difficult to quantify the exact role of Key Comparisons in the quality management system for international
metrology, and yet the expense of Key Comparisons will have to be justified in the budgets of many NMIs. As
shown below, when a Key Comparison is available, it is sometimes possible to quantify the extent to which reliance
is placed on supplementary information.

A policy that relies solely on the confidence developed by the Key Comparison would ignore many sources of
confidence: other information, other comparisons, history, judgement and expert opinion. A consistent policy for
Appendix C acceptances would use the same level of confidence in all decisions in a field. An NMI might make
some acceptances at levels of demonstrated confidence lower than for some rejections.  Unless it is being
deliberately inconsistent, that NMI is exhibiting the reliance that it is placing on other information. Appendix C
acceptances provide a large pool of decisions that might be examined to determine quantitatively the role of
supplementary information when there is an exactly matching Appendix B listing.

The role of confidence derived from supplementary sources can sometimes be inferred from the spread of
demonstrated confidence in the extensive set of decisions that an NMI has made. Suppose a particular NMI accepts
Laboratory A’s claim with a Key Comparison QDC of a%, and rejects Laboratory R’s claim with a QDC of r%; then
if r>a, it is clear that this NMI must be assigning a role to the supplementary information with at least a confidence
of (r−a )%.

To illustrate this quantification of the role of expert opinion with the above example, suppose that the MRA
Appendix C entries being considered were all at the highest level: i.e. the entries have the same uncertainties as the
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results summarized in the Key Comparison above. This implies that the confidence matrix for these particular
Appendix C decisions is that of Table 3. (Usually, the Appendix C claims will be at a lower level - having
substantially higher levels of confidence demonstrated by the Key Comparison - but this does not affect the
illustrative power of this example.) Recall that in Table 3 the column for each Laboratory tabulates, for each of the
other row Laboratories, the confidence demonstrated by the Key Comparison that repetitions of the comparison
would fall within the row Laboratory’s k=2 claim. Thus each Laboratory needs to consider only its own column
when voting on their acceptance of the other Laboratories’ claims, and needs to consider only its own row when
arguing for the acceptance of its own claim by the other Laboratories. Suppose that Laboratory 6 has accepted
Laboratory 5 (33% confidence from Table 3) and not Laboratory 4 (76% confidence from Table 3): these Laboratory
6 decisions reveal that it is allowing its additional information or its expert opinion to contribute at least (76-
33)=43% confidence. The difference may be due to additional confidence that could come from additional bilateral
comparisons, confidence from Laboratory visits and judgement on Laboratory procedures, different confidence
calculated from its own correlation analysis (and different than that used for Table 3), or even knowledge of
breakdowns in the Key Comparison. Whatever the origins for this additional confidence that Laboratory 6 has in the
capabilities of Laboratory 5, the QDC  method can quantify the minimum role played by supplementary information
and expert opinion in acceptances for Appendix C of the MRA: “expert opinion has contributed at least 43%
confidence to decisions made by Laboratory 6”. This process can be applied to a single NMI in a single Key
Comparison, to the pooled NMIs in a Key Comparison, to a single NMI in a pool of related Key Comparisons, to a
single NMI in a pool of unrelated Key Comparisons, or to decisions made or ratified by a Regional Metrology
Organization.  Key Comparisons are expensive, and quantifying the balance between their role and the role of other
information will allow for more informed decisions regarding participation in Key Comparisons in support of
inclusion in Appendix C.

If a Laboratory has identified a particular confidence level that must be reached to accept an Appendix C
submission, then any deficits revealed by their column (and row) of QDC values may be remedied by increasing the
Appendix C interval, or by relying on other information sources and expert opinion to cover the deficit. This
treatment of all sources of information is explicit in the MRA itself, but the use of the QDC method has allowed us to
treat the decisions quantitatively.

8. Discussion

Metrologists are used to dealing with extensive collections of measurements from within their own laboratories,
where they are often making decisions about what data is to be pooled and what data is to remain unpooled.
Typically, only one metrologist’s opinion about the measurements needs to be described. Interlaboratory
comparisons are fundamentally different, since measurements from more than one laboratory are being considered.
The bilateral difference and pair uncertainty incorporate opinions held by at least two different metrologists.

Even with their intra-laboratory experience, metrologists are finding significant challenges in interpreting the
wealth of interlaboratory comparisons being compiled for Appendix B in support of decisions on inclusion in
Appendix C. Intra-laboratory intuitions concerning data pooling are not easily transportable to the inter-laboratory
context. The consequences of excluding one data point can be very different in the two contexts. Within a single
laboratory, the exclusion of a data point from a large set of otherwise indistinguishable points would normally be
expected to be benign from every perspective in metrology. In the inter-laboratory case, however, it could have the
effect of excluding an NMI’s calibration and measurement capabilities from Appendix C.  The rigor required to
make these decisions for Appendix C is of a different, higher order than normally required in intra-laboratory
analyses, since the impact of dropping “one point” is  so much higher.

The appropriate starting point for examining equivalence rigorously is to treat the data as being independent,
rather than prematurely pooling the comparison data. QDE0.95 and QDC(k=2) allow the demonstrated level of
equivalence to be calculated rigorously, and provide a solid basis for decisions during the review process: either as
“Yes, include this claim - No, exclude that claim...” or as “For approval into Appendix C, only claims ±U′ or greater
will be accepted ”.

The other element that is facilitated in the confidencelevel or confidenceinterval approach is the natural
attachment of ownership to opinions expressed by combinations of probability distributions. In a measurement made
by a particular NMI, the probability distribution is centred on the mean and is of a width normally expressed by the
standard uncertainty; it is the opinion of that NMI’s responsible metrologist. In a bilateral comparison, expressed as a
difference of two measurements made in two NMI’s, the two responsible metrologists must examine and express
their own uncertainties, and may be able to examine each other’s uncertainty budgets for correlations. The opinion
expressed in the two-parameter degree of equivalence form is then the joint opinion of the two responsible
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metrologists. In a multilateral comparison, the pilot laboratory may be the best source for estimating the travel
uncertainty to attach to each bilateral pair of comparisons in the multilateral comparison, and in this case the joint
opinion regarding each bilateral comparison will be a three-party opinion. When a KCRV is chosen, a part of the
opinion expressed will come from those choosing the weights for the different measurements, and part will come
from those responsible for each NMI’s measurement, and some might come from the pilot laboratory expert in
assigning travel or local measurement uncertainty. Comparisons of an NMI’s results with the KCRV are an
expression of the most diffuse source of opinion, while for bilateral comparisons it will often be easier to identify
whose opinion is being expressed. Correlations will normally be quite high between the uncertainty of the difference
between one NMI’s value and the KCRV, and the uncertainty of the difference for another NMI. These correlated
components will largely cancel out when bilateral comparisons are calculated, even when using a KCRV
intermediary.

There is another opinion that is worth mentioning in this context, and that is the uncertainty distribution created
in the mind of an attentive reader. Communicating expert opinion to the reader to assist him in forming his own
opinion is the sole purpose of all the work done in performing, analyzing, and reporting Key Comparisons.
Impediments in communicating details to the reader are to be avoided, and means to facilitate understanding and
belief need development.

When the most difficult questions arise in deliberations surrounding the MRA, it may prove helpful to identify
ownership of the opinions expressed by probability distributions and their combinations. The confidence interval and
confidence level approaches make this clearer. An NMI facing rejection of its calibration and measurement
capability claims from Appendix C can properly look for support in the bilateral comparisons with other laboratories.
Each of the other laboratories will reveal the basis for its own opinion about that NMI in its bilateral comparison
abstracted from the Key Comparison. These joint opinions on the expectation of agreement are expressed most
clearly by the confidence levels for agreement within the Appendix C claim. From an N-laboratory multilateral
comparison, each laboratory will have N-1 joint opinions for agreement with the N-1 other NMIs. An NMI facing
rejection has the option of attempting to obtain higher confidence from the other NMIs by broadening its Appendix
C claim for agreement, and this points out another strong need for a rapid means of recalculating these aspects of
probability calculus.

Metrologists today are facing the first wave of calibration and measurement capability submissions arriving for
evaluation both within and among the six Regional Metrology Organizations. Some metrologists are only beginning
to appreciate the intricacies of this new task. For example, when uKCRV is non-zero, equivalence acceptance cannot
rely on a simple interpretation of equivalence to the KCRV: it is not transitive (i.e., where ≡ denotes equivalence,
A≡K and B≡K does not imply that A≡B). In this situation, the best strategy is to compile bilateral equivalence tables,
which summarize all of the laboratory-to-laboratory degrees of equivalence.

The task of examining complex comparison experiments that are summarized in Appendix B of the MRA as
tables of differences, with uncertainties, is very large, and will grow larger. A justifiable evaluation criterion is a first
step towards uniform application of a technically supported peer review process. Any organization which can
articulate a confidence level which is deemed sufficient for acceptance will be able to use QDC (k=2) to facilitate
acceptance decisions.

Equation 3 and the QDC(k=2) notation are specific to normal distributions. For non-normal distributions, a new
version of Equation 3 must be integrated, and a new notation for QDC  would be needed that would suggest that the
claimed capability ±U is being made at, say, a claimed confidence level of 95% (denoted by the k=2 in our notation
for normal distributions). The demonstrated confidence level for agreement with the arbitrating reference within ±U,
is x% computed by the new Equation 3, and perhaps can be much less than 95%. Distinguishing these two
percentages (the claimed confidence and the demonstrated confidence) is a notational challenge when both are
needed. However, the sentence describing the result remains simple: “Within the interval having a claimed
confidence of 95%, the confidence level demonstrated by the comparison is x%.”

Other criteria, even those that appear to be less well specified (such as a graphical analysis based on error bars
crossing the KCRV) can be translated using the QDE formalism into an explicit confidence level. Thus a decision can
be scrutinized with full mathematical rigor and applied to any other case with ISO Guide-compliant uncertainty
statements in any major metrology area, including degrees of freedom, correlations, and non-normal distributions.

9. Conclusion

We have illustrated the use of confidence interval methods in describing careful comparison measurements and their
associated uncertainty budgets. We have shown confidence intervals to be particularly useful in describing CIPM
Key Comparison data, and in supporting decisions made concerning submissions made for Appendix C of the MRA.
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We have shown how these techniques can even be used to quantify the minimum role assigned to expert opinion,
when expert opinion is blended with Key Comparison data for Appendix C decisions. A toolkit was introduced for
using confidence intervals with these MRA submissions, and has been shown to simplify the daunting tasks in
describing the essentials of the data. We conclude that Key Comparison data, representing the acme of the
metrologists’ art, warrant the most careful statistical treatment. Rigorous confidence interval techniques are exactly
fitted to the demands of MRA decision-making. Even for the extensive decisions of Appendix C, confidence
intervals can be used easily with an appropriate toolkit.
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Appendix

Recall the “master equation” used in probability calculus for evaluating confidence levels and confidence intervals:
the confidence level C, in per-cent, for agreement within an interval ±dC, symmetrically located around zero (i.e. the
expectation of agreement) is obtained by integrating the pair uncertainty distribution for the difference over the
interval.
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(A.1)

For a given level of confidence C, this integral equation can be solved for the half-interval dC by iteration. For a
comparison between two normal distributions, with means m1 and m2, and a pair standard uncertainty up, there is an
approximation formula that may be used to facilitate calculations of confidence intervals.

QDEC% ≈   |m1–m2| + {a0(C) + a1(C) × exp [–a2(C) × (|m1–m2|)/up]  } up (A.2)
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Coefficients for use with the approximation formula are given in Table A.1. They have been adjusted to fit
iterative numerical solutions of Equation A.1. The Maximum Error column gives the maximum difference between
each parameterized fit and the full numerical solution. At high confidence levels, the maximum error introduced by
equation A.2 is small relative to the usual limitations arising from the lack of certainty regarding the distribution and
its tails. With equation A.2, the best fit of the interval’s breadth at lower confidence levels has larger errors,
particularly where |m1–m2| << up. We do not believe that there is wide utility in calculating the intervals at these low
confidence levels, but if ever they are needed, equation A.1 can be solved at any required level of accuracy, again
limited by the lack of certainty regarding the distribution.

Table A.1 . The coefficients for the QDE approximation, Equation A.2; listed for different confidence levels, C.  The column labelled “Maximum
error of Equation A.2” is the maximum value of | QDE approximation-QDE interval | / (QDE interval), for any combination of z=|m 1–m2|/up and
up. For all confidence levels, the maximum error tends to zero  as z becomes greater than about  2up. For lower confidence levels (C<0.5), the error
in the Equation A.2 approximation is large, but only for z near 0.

C a0(C) a1(C) a2(C)
Maximum Error
of Equation A.2

0.995 2.576 0.236 5.287 0.2%
0.95 1.645 0.3295 4.050 0.5%
0.90 1.282 0.375 3.595 0.8%
0.85 1.036 0.418 3.300 1%
0.80 0.842 0.458 3.076 1%
0.75 0.674 0.498 2.890 2%
0.70 0.524 0.537 2.728 2%
0.68 0.468 0.554 2.669 3%
0.65 0.385 0.578 2.584 3%
0.60 0.253 0.622 2.450 4%
0.55 0.126 0.668 2.326 5%
0.50 0.000 0.718 2.207 6%
0.45 -0.126 0.773 2.092 8%
0.40 -0.253 0.834 1.980 11%


