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Abstract

The aim of an inter-comparison in Metrology is to combine the input information from several

Laboratories to output a representative value xr and its probability distribution function.

The procedure proposed in this paper identi�es a simple model for this probability function,

by taking into account the probability interval estimates as a measure of the uncertainty in each

Lab. A mixture density model is chosen to characterize the stochastic variability of the inter-

comparison population considered as a whole. The bootstrap method is applied to approximate

the distribution function of the comparison output. The algorithm, developed for a thermometric

inter-comparison, is described and the results are shown.

1 Introduction

The "mise en pratique" of the Mutual Recognition Arrangement (MRA) [1] prompted new studies
and projects in Metrology mainly concerning the inter-Laboratory comparisons area, in order to
de�ne the degree of equivalence according to the results of the "key comparisons".

Recently, a considerable e�ort has been devoted to �nalise the problem of the choice of a suitable
statistical procedure to summarise inter-comparison results. It is in
uenced by both metrological
considerations and by statistical assumptions, but it can also depend on the physical quantity under
comparison as discussed in a recent (1999) Workshop at NPL, UK.

Some of the critical issues now emerging are related to several di�erent conditions. For in-
stance: the statistical information supplied by each Laboratory for the comparison is synthetic,
since it comes from a data reduction process performed on several experimental datasets. In each
Laboratory, assumptions and statistical reduction procedures may be di�erent and sometimes not
fully documented or the a priori information on the original data may be insu�cient to de�ne
a "credible" probability distribution function (pdf) for output quantities of the inter-comparison.
Moreover, the largely unknown intensive pre-processing on the dataset may introduce additional
masking e�ects or bias, that cannot be modelled, as shown in [10] in processing tabulated literature
data, where it was impossible to trace back to the original dataset.

It is known that the use of the whole sets of original data from each Laboratory, as mentioned
in [8], might be an approach to avoid some of the inconveniences arising from the indirect process
of performing several separate reductions of the dataset and subsequent data fusion. But this
approach may be unfeasible in the inter-comparison case, due to the unavailability of all needed
data or to practical reasons. At present, the practice is to supply synthetic information xi by each
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participant to the inter-comparison and to use a location estimator to output the representative
value.

Because of the above mentioned reasons, e�orts should be given to improving the reliability of
inter-comparison results by asking for the use of any a priori information and of its "credibility"
to go ahead, towards the direct estimation of the output of the comparison, xr.

This paper proposes identi�cation of a solution without resorting to the synthetic values and the
point estimates of the related standard uncertainty, but only to the probability interval estimates as
the measure of the uncertainty. This approach consists of two parts: a modelling procedure to iden-
tify a simple mixture model able to characterise the stochastic variability of the inter-comparison
population as a whole; a parametric Monte Carlo algorithm to approximate the probability distri-
bution of the output xr, to estimate its variance or other accuracy measures at a prescribed level
of con�dence.

The concept of a mixture of distribution functions occurs when a population made up of distinct
subgroups is sampled, for example, in biostatistics, when it is required to measure certain charac-
teristics in natural populations of a particular species. Here each participant in an inter-comparison
constitutes a subgroup.

The choice of the Monte Carlo method arises from its ability to automatically compute a
numerical solution, also when the required analytic calculations may not be simple. It is based on
the principle of mimicking sampling behaviour by generating a large amount of simulated data. If
the Monte Carlo approach is applied with the principle of substitution (of the unknown probability
function with a probability model estimated from the given sample) [12], the approach is known as
bootstrap approach [6]. In [2] the case of a multivariate normal mixture model is considered and
the standard errors are estimated by means of the parametric bootstrap. The present algorithm
has been developed and applied to a thermometric inter-comparison, where data cannot necessarily
assumed to be Normally distributed.

2 Data structure of an inter-comparison with interval data

The number N of the Laboratories involved in an inter-comparison is typically small. In the i-

th Laboratory, the (�
(i)
1 ; : : : ; �

(i)
k ) measurements are supposed to pertain to a single probability

distribution function, say Fi(�), where � is the parameter vector, that may be partially unknown.
The measurements are statistically analysed and reduced to provide to the comparison the synthetic
value xi and its uncertainty ui at 95% con�dence level, or a 95% uncertainty interval (95%CI):
((x1; u1) : : : ; (xN ; uN ))

In this work the uncertainty is considered as "a 95%CI rather than as a multiple of the standard
deviation" (see 4.3.4 in [9]). In this general frame, let us say that one aim of an inter-comparison
is to combine the input data and the information on the probability functions Fi(�) in the Labs to
characterise a representative value of the inter-comparison, in other words the random variable �
and its pdf F . Hence an accurate approximation of the 95%CI for � can be obtained if the output
pdf F is known, where F depends on the stochastic variability of the data in each Lab. A suitable
estimate �̂ of the expected value EF [X] =

R
xdF (x) could be accepted to output the reference value

xr. The inter-comparison data, in terms of interval estimates, are here considered and summarised
as follows:

INPUT Sample - Each one of the N participants originates a 95%CI that is one element of the
inter-comparison sample:

f[uil; uiu]; i = 1; : : : ; Ng (1)
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Here no value xi in the interval [uil; uiu] is chosen as representative; possible information on Fi

(such as limited or unlimited support, symmetric or not) should be added. If a Laboratory does
not supply any information on pdf, the Uniform distribution is assumed.

Comparison OUTPUT - It includes the representative value and its 95%CI

(�̂; [�l; �u]): (2)

In many inter-comparisons, the di�erences to � are also de�ned: (yi; [wil; wiu]), where yi =
xi� �̂; i = 1; : : : ; N . In the case of the key-comparisons in [1], �̂ is called Key Comparison Reference

Value.

3 A classical approach to inter-comparisons

Let us recall the solution to the inter-comparison problem through the traditional estimator, the
weighted mean. It is a location statistic that combines several measures and their standard uncer-
tainties (xi; ui)

N
i=1. It provides the following estimate for � :

�w = u2w

NX
j=1

xj
u2j
; u2w =

0
@

NX
j=1

1

u2j

1
A
�1

(3)

and the following symmetric 95%CI:

�w � kuw (4)

where the coverage factor k is taken as the value tN�1;0:95 of the Student distribution, being
N small. In this approach, each xi is viewed as an unbiased estimate of the Laboratory mean
value and the random variable �w is de�ned to be a linear combination of N independent random
variables X1; : : : ;XN , where fx1; : : : ; xNg is an observed sample. The variable �w is supposed
to be asymptotically normally distributed [9]. This estimator can be correctly adopted to solve
an inter-comparison problem if the assumption of the homogeneity of the data is valid. This is
equivalent to say that, after considering the extent of the real e�ect and bias in each Laboratory,
the Laboratories yield on the average the same value, so that the di�erences between the estimates
are entirely due to random error. In this case, the selected estimator �w appropriately estimates �
and eq.4 accurately estimates its 95%CI.

Inconveniences to apply this approach to a key-comparison have been discussed in [5]. The
"credibility" of the representative values xi, and of their uncertainty can critically a�ect the ac-
curacy of the estimate of the representative value xr. Moreover, the peculiar characteristics of a
typical inter-comparison sample (1 - its very limited size, from a statistical point of view, 2 - di�er-
ent experimental methods, used in each Laboratory) often imply that the statistical assumptions
are not satis�ed, as for example in several thermometric cases [10]. Indeed, the �rst characteristic
implies that the Central limit Theorem and the asymptotic theory do not hold. Then the Normality
distribution cannot be properly used to infer the estimates in eq.4.

Another example of the inadequacy of the weighted mean approach is when some Laboratories
provide data a�ected by bias, resulting from skewed distributions underlying their measurements.
The symmetric con�dence interval of eq.4 cannot be considered an accurate approximation 1 of

1A 95% CI [�l; �u] for � is de�ned to be accurate if the following holds for every possible value for �: ProbGf� �
�ug = 0; 025 and ProbGf� � �lg = 0; 025
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the true one, since it does not adjust for the skewness. Finally, it is necessary to point out that
the homogeneity condition among the Laboratories must be assured in some sense, otherwise it
would be impossible to attempt to the computation of any summary estimate and its associated
uncertainty.

4 The approach based on interval data

4.1 The mixture density function

This paper proposes to construct a simple model for the output pdf and to estimate its expected
value � without requiring strong assumptions such as N large or each Fi Normal. This approach
enables to compute the probability interval of the output value in term of the identi�ed density in
each Lab. The stochastic variability of the population of inter-comparison data is directly considered
in this modelling approach as a whole, by means of a so-called mixture distribution model [7]. This
model appears to be suitable from a computational point of view and can be embedded in a
bootstrap algorithm to simulate several data needed to predict the output quantities.

A �nite mixture density function is a linear superposition of several (say N) component densities.
In an inter-comparison, let us suppose that a density function fi(x; �

(i)) is assumed for the i-th
Laboratory, then the following density mixture, where the parameter vector is � = (�(1); : : : ;�(N))
and weights �i � 0; i = 1; : : : ; N have summation normalised to 1, can be identi�ed to model the
output pdf:

g(x; �) =
NX
i=1

�ifi(x; �
(i)) (5)

To compute the output value as estimate of the expected value of this mixture distribution, � =
E[G(�)], the probability function G(�) should be known. Since some Labs may provide only
partial information on pdf, we propose to model its stochastic variability by using one of the
following simple probabilistic models, uniform, normal or triangular pdf (right or left or symmetric
triangular). Indeed, in thermometric experiments these three probabilistic models can represent
several common stochastic variabilities, such as a limited or unlimited support, symmetric or not,
for the measurements.

We want the mixture parameters to be estimated by means of the INPUT Sample of eq.1,
as required in a bootstrap approach. Let us call Ii the probability interval to which the 100%
measurements of the Laboratory are supposed to pertain. For the Uniform and the Triangular
types �(i) are de�ned to be the extremes of Ii = [�il; �iu]. For the Normal model the parameters
are the mean xi and the variance ui, while Ii becomes (�1;+1).

A right triangular pdf (RT), a left triangular (LT) or symmetric triangular (ST) is chosen
according to the position where the maximum of the probabilty density occurs, i.e. one extreme or
the middle point of I.

To compute a bi-dimensional vector �(i) = [�il; �iu]
�1 given the i�th input interval, a 0,025%

portion of probability mass is added outside of each extreme, according to the supplied density
shape. For example, if the ST density is chosen, the parameters are computed by:

�il = (0:89uil � 0:11uiu)=0:78 �iu = (0:89uiu � 0:11uil)=0:78

The mixture weights could be used to associate a degree of "credibility" to each Lab. Then
the choice �i = 1=N; i = 1; : : : ; N , implies that every Laboratory equally contributes to the inter-
comparison.
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When the mixture G(�̂) is completely identi�ed, it can be used to simulate data and to approx-
imate the output value in the bootstrap algorithm.

4.2 The bootstrap algorithm

To avoid integral computations for the expected mean � and the variance, the Monte Carlo method is
used to approximate them within a given precision ([6]). The parametric bootstrap does resampling
from a parametric distribution model (in this case a mixture model G(�̂)). Then the following
distribution:

H(x) = ProbĜf�
� � xg (6)

is approximated by applying the Monte Carlo method, i.e. a su�ciently high number B of data ��

are simulated from Ĝ = G(�̂), to compute:

H(x)(B) =
1

B

BX
b=1

�f��b � xg (7)

where the function �fAg is the indicator function of the set A. With probability one, it is known
that the Monte Carlo approximation converges to the true value as B ! 1. The Monte Carlo
algorithm has been developed for a mixture density to estimate the Comparison output. A hierar-
chical resampling strategy is used to reproduce the hierarchical variability in the inter-comparison
population, throughout the following steps:

� 1.a) Choose at random an index, say k, of k-th Laboratory by randomly resampling with
replacement from the set f1; : : : ; Ng:

K � ProbfK = kg = �i

� 1.b) Given k, generate, at random from the selected Fk of the distribution, a bootstrap value
�� in [�kl; �ku]

� Repeat step 1) B times to simulate the full bootstrap sample ��1; : : : �
�

B .

� 2) Approximate the bootstrap mixture distribution as in eq.7 to compute:
- the bootstrap estimate of the expected mean

�̂�B =
1

B

BX
b=1

��b (8)

- the bootstrap standard deviation

Sd�B = (
1

B � 1

BX
b=1

(��b � �̂�B)
2)1=2

- the 95%CI [��l ; �
�

u], where the two extremes are computed as the �-th quantile 2 (� = 0.025)

of the bootstrap distribution HB
Boot(�))

�1 = q��B , hence "�l = q��B and "�u = q
�(1��)
B .

2The percentile method of a statistics �, based on B bootstrap samples, simply gives for a �-percentile q��B =
f(�B)� th largest for ��bg
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Lab1 (-0.05; 0.15) [-0.347, 0.247] Lab2 (0.03; 0.30) [-0.564, 0.624]

Lab3 ( 0.18; 0.15) [-0.117, 0.477] Lab4 (0.04; 0.15) [-0.257, 0.337]

Lab5 ( 0.71; 0.15) [ 0.413, 1.007] Lab6 (-0.01; 0.15) [-0.307, 0.287]

Lab7 (-0.03; 0.15) [-0.327, 0.267]

Table 1: Inter-comparison of 7 Laboratories [11]: point estimates and simulated interval data

In step 1.b) the inverse transformation method has been used for simulating a random variableX
having a continuous distribution Fk: for example, X = F�1

k (U), for a U(�kl; �ku) random variable.
In step 2) the bootstrap CI has been computed by means of the percentile method (see footnote).
However, when the Normal distribution is involved in the mixture, the t� bootstrap method gives
more appropriate results [6]. To determine B in approximating the bootstrap con�dence interval
the coe�cient of variation [12] can be used. The value of B is increased until the coe�cient of
variation cv of the sample quantile approaches the given precision �0. Indeed, from a metrological
point of view, it appears easier to choose �0 instead of B as stopping rule in step 1) as in [4].

We would like to have also an automatic tool to investigate how well every Lab contributes
to the comparison, or to detect the possible presence of heterogeneous data. Here the concept of
jackknife-after-bootstrap has been adopted to compute the mean and the bootstrap 95%CI. It is
simply obtained by the following algorithm:

- for i = 1; :::; N , leave out the i-th Lab and compute �̂�B(�i) and q�B(�i)
- compare the N jackknife estimates to detect outlier values.

5 An application in thermometry

The proposed method is now shown applied to an inter-comparison of Temperature Fixed Points,
involving N =7 Laboratories [11]. In each Lab the provided data are: xi with the 95% standard
uncertainty (Table 1).

In the same Table, the second items (in square brackets) represent the interval data generated
with eq.4, that have been used in this simulated example. Since no speci�c pdf was supplied, the
Mixture distribution density has been constructed assuming the Uniform model for each participant
with equal weights. The parameters of every Uniform density was computed using the input
interval data, and the obtained Mixture density was used in the bootstrap algorithm to compute
the representative value and its probability interval with �0 = 0:05. The results are obtained for
�0 = 0:05 or B = 2209: �̂� = 0.14, bootstrap standard deviation Sd�=0.33, 95%CI [-0.35, 0.92].
Figure 1-left the bootstrap histogramme, that approximates the Mixture density, shows a bimodal
behaviour

The proposed procedure was also applied with a Mixture of seven Normal densities, and the
results are �̂� = 0.13, Sd� = 0.43, bootstrap 95%CI [-0.61, 1.1] for B =4752. The e�ect of assuming
unlimited symmetric distributions to model the output pdf results in a wider 95%CI for the Mixture
of Normal densities.

By comparing the jackknife results in Table 2, Lab5 appears to supply unusual values. To
directly consider this behaviour in the inter-comparison, a mixture of six Uniform densities plus a
RT density, identifying Lab5, has been constructed. The approximated bootstrap distribution is
displayed in Fig.1- left, with bootstrap estimates, �̂� = 0.15, standard deviation Sd� = 0.35 and
[-0.35, 0.96] for the Boostrap 95%CI, obtained for B = 2209.

6



−2.5 −0.5 1.5
1.0

51.0

101.0

151.0

201.0

251.0

301.0

Mixture of 7 Uniform densities
B = 2209

−2.5 −0.5 1.5
1.0

51.0

101.0

151.0

201.0

251.0

301.0

Mixture of 6 Uniform and 1 RT densities
B = 2209

Figure 1: Bootstrap histograms B =2209: left- Mixture of 7 Uniform distributions, right Mixture
of 6 ST plus one RT density for Labi.

Lab1 0.34 [-0.45, 0.92] Lab2 0.32 [-0.31, 0.94]

Lab3 0.34 [-0.40, 0.91] Lab4 0.34 [-0.35, 0.92]

Lab5 0.23 [-0.42, 0.48] Lab6 0.34 [-0.36, 0.95]

Lab7 0.34 [-0.42, 0.92]

Table 2: Jackknife-after-boostrap estimates. Standard deviation and 95%CI for Mixture of 6
Uniform densities (B = 1000): in the i� th item, Labi is left out

6 Conclusions

The problem of the inter-comparison data has been brie
y illustrated, and an approach di�erent
from the classical one has been proposed. It is based on the uncertainty estimates that should be
provided by each Laboratory as the con�dence interval at 95% level together with information, also
partial, on the probability function. The proposed procedure directly characterises the stochastic
variability of the reference value of the inter-comparison, by means of a mixture density model. The
result of an inter-comparison is then viewed as a random variable that cannot be directly measured,
being the output of a complex process, that involves measures, summary statistical information and
metrological considerations. These considerations suggest constructing a mixture, with weights �i
that must be attributed to each participating Laboratory according to its credibility. When the
same credibility is associated to each Laboratory the choice �i = 1=N implies that each Laboratory
equally contributes to the inter-comparison.

The parametric bootstrap approach has been adopted to estimate in a simple and automatic
way the output of the inter-comparison, where every information, even partial, on the probability
hierarchical structure of the data, acquired in the participating Laboratories, has been taken into
account.

Also with a limited number of involved Laboratories (N = 7) the method can be applied, as
it happens in the thermal metrology example, when the experimental conditions imply to adopt
skewed distributions. The automatic method of detecting the heterogeneous data, based on a

7



jackknife strategy, has revealed an unusual value. To take into account this condition, a mixture of
six Uniform densities and a RT density to identify Lab5 could be better used. The choice of equal
weights emphasises that all the standards have contributed.

The parametric bootstrap procedure has been completely developed for a class of �ve simple
distribution functions, that can simply model several practical experimental conditions in ther-
mal metrology. However, the algorithm could be adapted to other distribution functions, where
the synthetic information provided by the Laboratories, as summarised in section 2, unables the
preliminary estimate of the distribution parameters of the mixture model.
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