# ITS-90 MEASUREMENT BY MEANS OF NON-STANDARD PLATINUM RESISTANCE THERMOMETERS 

P. Marcarino, P.P.M. Steur<br>CNR Istituto di Metrologia "G. Colonnetti", Torino, Italy

Many laboratories are using Platinum Resistance Thermometers (PRTs) that do not satisfy the requirements of the ITS-90 for its Standard Platinum Resistance Thermometers (SPRTs) for temperature measurements, mostly as so-called check thermometers dedicated to one (or a few) fixed point baths. These are either ex-standard thermometers no more satisfying the purity requirements of the ITS-90, or good laboratory thermometers with an a value a little below $3,9244 \cdot 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$, or even IPRTs with good stability.
Although these thermometers are calibrated (by comparison with a SPRT), the direct application of the Callendar-Van Dusen (CVD) equation, widely-used for non-standard thermometers, may cause errors as large as almost $0,1^{\circ} \mathrm{C}$, a highly unsatisfactory situation. See in Fig. 1 the application of the CVD on 38 working standard thermometers of the Italian Calibration Services (SIT), where the results are largely depending on the calibration range.


Figure 1 Residuals from the application of the CVD equation to 38 working standard thermometers of SIT laboratories. $\Delta t$ represents the temperature equivalent of $\left(R_{\mathrm{t}} / R_{0}\right)_{\mathrm{DVD}}-\left(R_{\mathrm{t}} / R_{0}\right)_{\text {meas }}$.

At Tempmeko 2001 [1] a solution was presented. This solution uses a correction function that allows the application of the CVD to these thermometers with largely reduced errors, of the order of a few millikelvin between $-10^{\circ} \mathrm{C}$ and $655^{\circ} \mathrm{C}\left(2,5 \mathrm{mK}\right.$ for Eq. 3). Even down to $-75^{\circ} \mathrm{C}$ this error is limited (for Eq. 3) to about 8 mK only. With Eq. 2 the residuals are a little larger: lower than 6 mK from $-10^{\circ} \mathrm{C}$ up to $365^{\circ} \mathrm{C}$, lower than 18 mK up to $655^{\circ} \mathrm{C}$ and lower than 11 mK down to $-77^{\circ} \mathrm{C}$. In contrast to other methods to limit these errors (e.g. a higher order interpolating equation) no dependence at the above levels has been found on the calibration range without introducing extra calibration points. See in Fig. 2 the results of the application of the Eq. 1 and 3 on the 38 working standard thermometers of Fig. 1. Most of the 20 thermometers calibrated above $250{ }^{\circ} \mathrm{C}$ and having residuals in Fig. 1 at $100^{\circ} \mathrm{C}$ larger than $0,03^{\circ} \mathrm{C}$, show now residuals well within $0,01^{\circ} \mathrm{C}$ at $100{ }^{\circ} \mathrm{C}$. Also in the range above $100^{\circ} \mathrm{C}$, all thermometers show a large reduction of the residuals.


Figure 2 Residuals of the application of Equations (3) and (4) to 38 working standard thermometers of SIT laboratories. $\Delta t$ represents the temperature equivalent of $\left(R_{\mathrm{t}} / R_{0}\right)_{\mathrm{DVD}, \bmod }-\left(R_{\mathrm{t}} / R_{0}\right)_{\text {meas }}$.

The correction function is, above $0^{\circ} \mathrm{C}$, essentially an approximation to the residual of a quadratic regression (CVD) on the ITS-90 reference function with as coefficients the constants A and B of the CVD. Below $0{ }^{\circ} \mathrm{C}$ it is an approximation to the residual of the linear regression used to determine the constant C of the 4th order Van Dusen equation. I.e. before applying the CVD, temperature $t_{90}$ is substituted with $t^{\prime}$ :

$$
\begin{equation*}
t^{\prime}=t_{90}+f\left(t_{90}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
f\left(t^{\prime}\right)=\gamma\left(\frac{t^{\prime}}{100}\right)\left(\frac{t^{\prime}}{t_{1}}-1\right)\left(\frac{t^{\prime}}{t_{2}}-1\right)\left(\frac{t^{\prime}}{t_{3}}-1\right)\left(\frac{t^{\prime}}{t_{4}}+1\right) \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
f\left(t^{\prime}\right)=\gamma\left(\frac{t^{\prime}}{100}\right)\left(\frac{t^{\prime}}{t_{1}}-1\right)\left(\frac{t^{\prime}}{t_{2}}-1\right)\left(\frac{t^{\prime}}{t_{3}}-1\right)\left(\frac{t^{\prime}}{t_{4}}-1\right)\left(\frac{t^{\prime}}{t_{5}}+1\right) . \tag{3}
\end{equation*}
$$

The values of the various parameters are:

|  | Equation (2) | Equation (3) |
| :--- | :--- | :--- |
| $\gamma$ | $-0,034$ | $-0,043$ |
| $t_{1}$ | 205 | 190 |
| $t_{2}$ | 412 | 393 |
| $t_{3}$ | 652 | 660 |
| $t_{4}$ | 125 | 905 |
| $t_{5}$ |  | 99 |

The application of the Eq. 1 and 2 on the 38 working standard thermometers of Fig. 1 gives a result comparable to that of Fig. 2, because of the limited uncertainty level of the calibration points. An important result of the study is that no systematic differences beyond $0,01^{\circ} \mathrm{C}$ appear among thermometers having different $\alpha$ values.

## References:

[1] ITS-90 Approximation by means on Non-standard Platinum Resistance Thermometers, P. Marcarino, P.P.M. Steur, G. Bongiovanni, B. Cavigioli, Proc. TEMPMEKO 2001 in press.

