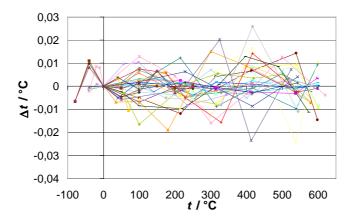

ITS-90 MEASUREMENT BY MEANS OF NON-STANDARD PLATINUM RESISTANCE THERMOMETERS

P. Marcarino, P.P.M. Steur

CNR Istituto di Metrologia "G. Colonnetti", Torino, Italy


Many laboratories are using Platinum Resistance Thermometers (PRTs) that do not satisfy the requirements of the ITS-90 for its Standard Platinum Resistance Thermometers (SPRTs) for temperature measurements, mostly as so-called check thermometers dedicated to one (or a few) fixed point baths. These are either ex-standard thermometers no more satisfying the purity requirements of the ITS-90, or good laboratory thermometers with an a value a little below $3,9244 \cdot 10^{-3} \, {}^{\circ}C^{-1}$, or even IPRTs with good stability.

Although these thermometers are calibrated (by comparison with a SPRT), the direct application of the Callendar-Van Dusen (CVD) equation, widely-used for non-standard thermometers, may cause errors as large as almost 0,1 °C, a highly unsatisfactory situation. See in Fig. 1 the application of the CVD on 38 working standard thermometers of the Italian Calibration Services (SIT), where the results are largely depending on the calibration range.

Figure 1 Residuals from the application of the CVD equation to 38 working standard thermometers of SIT laboratories. Δt represents the temperature equivalent of $(R_t/R_0)_{\text{DVD}} - (R_t/R_0)_{\text{meas}}$.

At Tempmeko 2001 [1] a solution was presented. This solution uses a correction function that allows the application of the CVD to these thermometers with largely reduced errors, of the order of a few millikelvin between -10 °C and 655 °C (2,5 mK for Eq. 3). Even down to -75 °C this error is limited (for Eq. 3) to about 8 mK only. With Eq. 2 the residuals are a little larger: lower than 6 mK from -10 °C up to 365 °C, lower than 18 mK up to 655 °C and lower than 11 mK down to -77 °C. In contrast to other methods to limit these errors (e.g. a higher order interpolating equation) no dependence at the above levels has been found on the calibration range *without introducing extra calibration points*. See in Fig. 2 the results of the application of the Eq. 1 and 3 on the 38 working standard thermometers of Fig. 1. Most of the 20 thermometers calibrated above 250 °C and having residuals in Fig. 1 at 100 °C larger than 0,03 °C, show now residuals well within 0,01 °C at 100 °C. Also in the range above 100 °C, all thermometers show a large reduction of the residuals.

Figure 2 Residuals of the application of Equations (3) and (4) to 38 working standard thermometers of SIT laboratories. Δt represents the temperature equivalent of $(R_t/R_0)_{\text{DVD, mod}} - (R_t/R_0)_{\text{meas}}$.

The correction function is, above 0 °C, essentially an approximation to the residual of a quadratic regression (CVD) on the ITS-90 reference function with as coefficients the constants A and B of the CVD. Below 0 °C it is an approximation to the residual of the linear regression used to determine the constant C of the 4th order Van Dusen equation. I.e. before applying the CVD, temperature t_{90} is substituted with *t*':

$$t' = t_{90} + f(t_{90}) \tag{1}$$

where

$$f(t') = \gamma \left(\frac{t'}{100}\right) \left(\frac{t'}{t_1} - 1\right) \left(\frac{t'}{t_2} - 1\right) \left(\frac{t'}{t_3} - 1\right) \left(\frac{t'}{t_4} + 1\right)$$
(2)

or

$$f(t') = \gamma \left(\frac{t'}{100}\right) \left(\frac{t'}{t_1} - 1\right) \left(\frac{t'}{t_2} - 1\right) \left(\frac{t'}{t_3} - 1\right) \left(\frac{t'}{t_4} - 1\right) \left(\frac{t'}{t_5} + 1\right).$$
(3)

The values of the various parameters are:

	Equation (2)	Equation (3)
γ	-0,034	-0,043
t_1	205	190
t_2	412	393
<i>t</i> ₃	652	660
t_4	125	905
t_5		99

The application of the Eq. 1 and 2 on the 38 working standard thermometers of Fig. 1 gives a result comparable to that of Fig. 2, because of the limited uncertainty level of the calibration points. An important result of the study is that no systematic differences beyond 0,01 °C appear among thermometers having different α values.

References:

[1] *ITS-90 Approximation by means on Non-standard Platinum Resistance Thermometers*, P. Marcarino, P.P.M. Steur, G. Bongiovanni, B. Cavigioli, **Proc. TEMPMEKO 2001** in press.