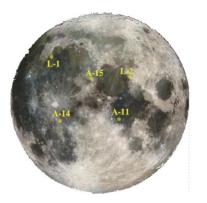


Lunar Reference Frames – IAG

Krzysztof Sośnica, Agnes Fienga, IAG JWG 1.1.3

Proposals

TDB - ephemerides



LCRS=Lunar Celestial Reference System (quasi-inertial)
LRS=Lunar Reference System (body-fixed)
ILRF=International Lunar Reference Frame
PA= Principal Axis

Proposals

The Lunar Reference System (LRS) is defined in such a way that:

- its origin coincides with the center of mass of the Moon,
- its orientation is defined by the diagonal matrix of the lunar tensor of inertia, thus, co-rotates with the Moon,
- its scale follows the GR framework as defined by the IAU 2024 resolutions.

The International Lunar Reference Frame (ILRF) is realized in such a way that:

- its origin is based on the combination of INPOP21a, DE430, and EPM2021, using Variance Component Estimation (VCE) and referred to the mean center of mass of the Earth.
- its orientation is provided by three Euler angles from the VCE combined solution based on INPOP21a, DE430, and EPM2021.
- its scale is realized contemporarily with the origin and orientation.
- the weights for the origin and orientation derived from VCE are the same for all components.

Proposals

_		246		196				
		TDB						
		Moon						
	3 Relative to :	Observer						
	4 Planetary theory :	Combination of	EPM2021, INPOP2	21, and DE430				
	5 Coordinates :	Equatorial						
		Mean J2000						
4		Geocentric						
4	8 Light time correction :							
4		no						
	10							
%	11 Date		Position	-4.5		Velocity		
	12 YYYY MM DD HH MM SS.sss	X(m)	Y(m)	Z(m)	Vx(m/s)	Vy(m/s)	Vz(m/s)	
4	13 1970 01 01 00 00 00.000		-63032035.128	-44389491.055	254.95073774	-851.93857476	-452.80022984	
9	14 1970 01 01 18 00 00.000			-72959754.781	421.04387129	-812.06166723	-426.77493420	
2	15 1970 01 02 12 00 00.000			-99410379.440	580.43055965	-747.13866643	-387.37500649	
8	16 1970 01 03 06 00 00.000				727.93017141	-657.22268029	-334.77313597	
8	17 1970 01 04 00 00 00.000				857.89682128	-543.23719303	-269.62674217	
2	18 1970 01 04 18 00 00.000				964.42508966	-407.25121194	-193.22084080	
	19 1970 01 05 12 00 00.000				1041.72470952	-252.72414697	-107.58979150	
	20 1970 01 06 06 00 00.000	-42538788.822			1084.66611505	-84.63731266	-15.57295728	
2	21 1970 01 07 00 00 00.000		-315581419.091		1089.44030400	90.58085863	79.24435808	
8	22 1970 01 07 18 00 00.000		-304023900.051		1054.20745130	265.40230164	172.73707175	
	23 1970 01 08 12 00 00.000		-281367117.968		979.56267651	431.81542969	260.58658092	
	24 1970 01 09 06 00 00.000		-248409567.945		868.66236808	582.11043566	338.70899266	
	25 1970 01 10 00 00 00.000		-206418150.853		726.94325833	709.65948800	403.66921956	
	26 1970 01 10 18 00 00.000		-157037461.315	-75603249.317	561.49574639	809.50836627	452.98349606	
8	27 1970 01 11 12 00 00.000		-102170287.789	-45110451.391	380.25835488	878.66222401	485.25155832	
8	28 1970 01 12 06 00 00.000 29 1970 01 13 00 00 00.000	366765613.922	-43850109.051	-13091170.474	191.23096403 1.85778600	916.05360688 922.27108532	500.11757800	
8	30 1970 01 13 00 00 00.000	373004940.739 367140263.944	15875992.913 75042264.563	19339765.760 51124113.558	-181.35441290	899.16698560	498.10640303 480.40096642	
2	31 1970 01 14 12 00 00.000	349752138.519	131832893.186	81295507.073	-352.99549697	849.45271142	448.61914356	
	32 1970 01 15 06 00 00.000	321735990.803	184626024.794	109001330.585	-508.74641057	776.35254640	404.62676265	
	33 1970 01 16 00 00 00.000	284234355.978	232018147.654	133514081.685	-645.27788425	683.34589113	350.40103572	
	34 1970 01 16 18 00 00.000	238577157.616	272834686.624	154235499.576	-760.11174903	573.99761239	287.94261574	
	35 1970 01 17 12 00 00.000	186231067.126	306132030.969	170696307.738	-851.48433035	451.85979341	219.22615054	
8	36 1970 01 18 06 00 00.000	128757033.073	331194913.755	182553661.120	-918.23311781	320.42279777	146.17681118	
8	37 1970 01 19 00 00 00.000	67774173.911	347531645.531	189587598.322	-959.71402144	183.09481696	70.66133598	
8	38 1970 01 19 18 00 00.000	4928070.219	354868486.275	191697136.514	-975.74753090	43.19340740	-5.51527038	
8	30 1370 01 13 10 00 00:000	1320070.213	331000100.273	// 130.314	373.74733030	10.10010110	3.31327030	

VCE for the orbit combination:

Zajdel, R., Mansur, G., Sakic, P. *et al.* Advancing multi-GNSS orbit combination in the variance component estimation framework. *J Geod* **99**, 90 (2025). https://doi.org/10.1007/s00190-025-02005-

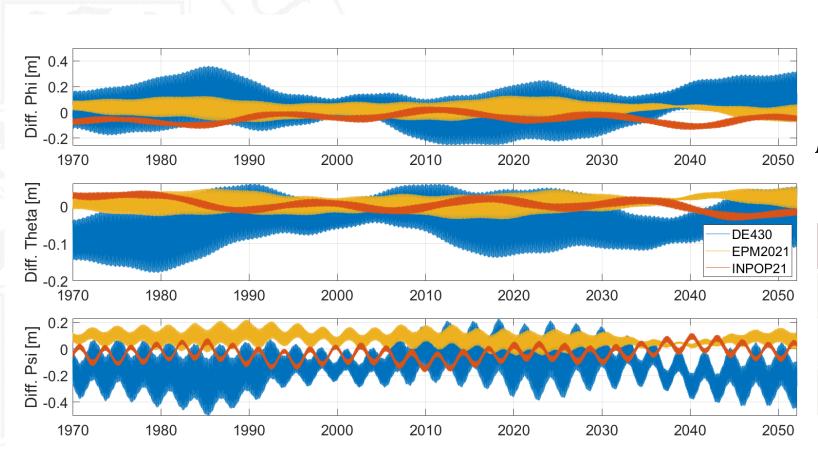
ILRF is expressed as a time series of positions, velocities, orientation angles and their first derivatives (in ASCII format sampled every 0.75 days), as well as in the form of Chebyshev polynomials (continuous function). Implementation period: 1970-2052

→ Easily accessible to users (calceph)

Additionally, the positions of the retroreflectors, the kinematic corrections, the Love number corresponding to the realization, and the transformation parameters to PA and ME are provided, see:

Definition and Realization of the International Lunar Reference Frame: https://doi.org/10.48550/arXiv.2510.15484

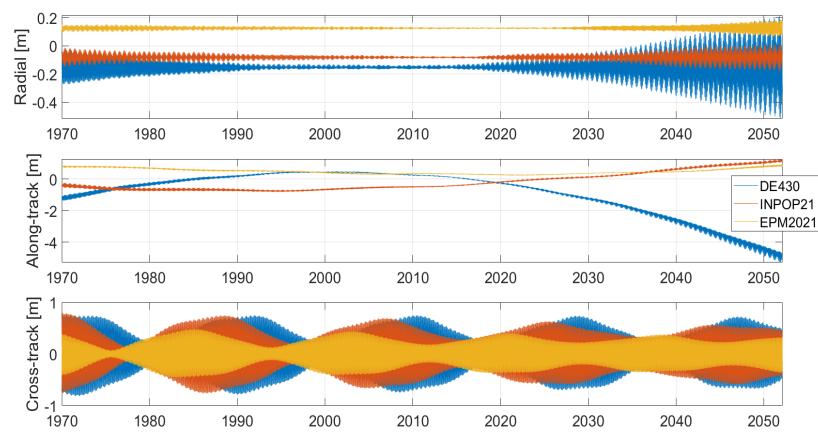
Astronomy & Astrophysics manuscript no. output October 14, 2025 ©ESO 2025


Definition and Realization of the International Lunar Reference Frame

K. Sośnica¹, A. Fienga², D. Pavlov³, N. Rambaux⁴, and R. Zajdel^{1,5}

- Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland e-mail: krzysztof.sosnica@upwr.edu.pl
- Observatoire de la Côte d'Azur, Université Côte d'Azur, CNRS, IRD, 250 avenue A. Einstein 06560 Valbonne, France
- ³ St. Petersburg Electrotechnical University, Faculty of Computer Science and Technology, ul. Professora Popova 5, 197022 St. Petersburg, Russia
- 4 Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, Laboratoire Temps Espace, LTE, F-75014 Paris, France
- ⁵ Research Institute of Geodesy, Topography and Cartography, Geodetic Observatory Pecný, Ústecká 98, Zdiby, 25066, Czechia Received October 10, 2025

Realization of the ILRF - Orientation


Orientation of the ILRF PA – residuals with respect to individual ephemerides (im meters on the lunar surface)

$$LRS = R_Z(\psi) R_X(\theta) R_Z(\varphi) LCRS$$

RMS [m]	Phi	Theta	Psi
EPM21	0.054	0.022	0.092
INPOP21a	0.059	0.017	0.063
DE430	0.139	0.067	0.189

Realization of the ILRF - Origin

Origin of the RF – differences w.r.t. the combination

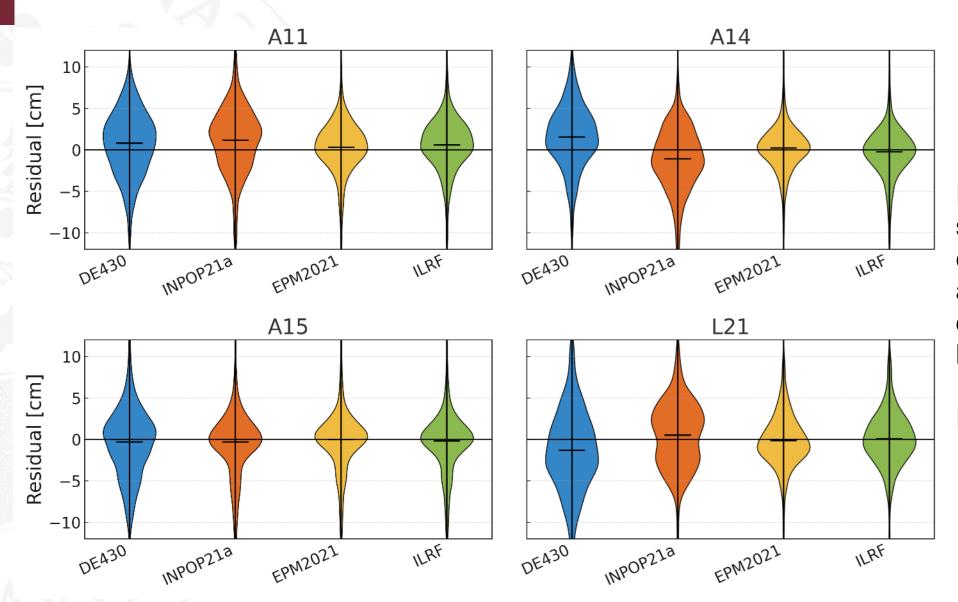
Origin of the ILRF system relative to the geocenter – residuals relative to individual ephemerides.

The offset for the radial component results from different scales of the frames. The largest differences occur for the along-track component in the prediction period. Cross-track is stable which means that the orbital plane is well-defined.

RMS [m]	Radial	Along- track	Cross- track
EPM21	0.126	0.511	0.214
INPOP21	0.084	0.599	0.350
DE430	0.168	1.666	0.372

STD is the standard deviation w.r.t. the mean value. RMS is the root mean square error without removing the mean offset value.

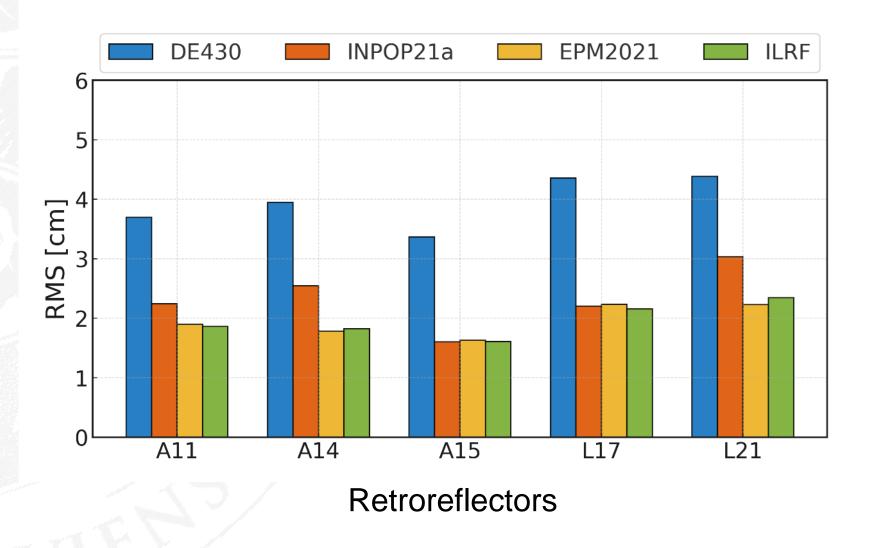
Realization of the ILRF – error assessment


Frame	weights			
EPM21	0.451454072137127			
INPOP21a	0.380949596178372			
DE430	0.167596331684500			

Mean errors of the ILRF combination for individual epochs as derived from VCE with a distinction for the origin and orientation constituents.

The smallest combination errors are for the period **2010-2030** with a **total error of 17.6 cm** (dominated by the origin error of 15.3 cm with a contribution from orientation of 8.6 cm). For the whole assessed period, the total error equals to **31.6 cm**.

Mean Error [m]	1970-1990	1990-2010	2010-2030	2030-2052	Whole
Origin	0.284	0.225	0.153	0.467	0.305
Orientation	0.085	0.061	0.086	0.068	0.082
Total	0.296	0.233	0.176	0.472	0.316

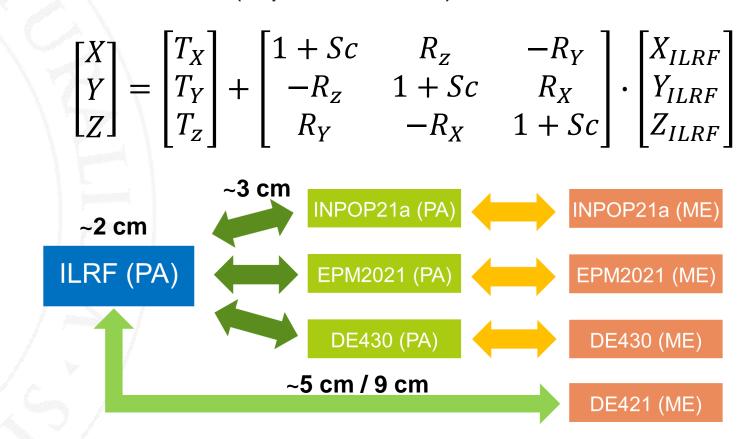

Realization of the ILRF – validation using LLR

Error distribution for a solution without kinematic corrections (only 3 Euler angles are applied + tidal displacement with VCE-d k₂ value).

Period: 1984-2025

Realization of the ILRF – validation using LLR

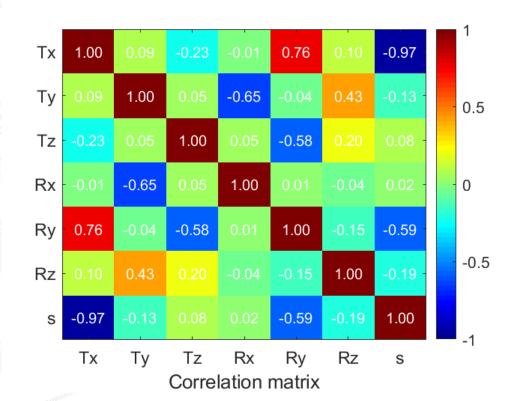
Mean errors for LLR observations (one way), 2015-2025*.

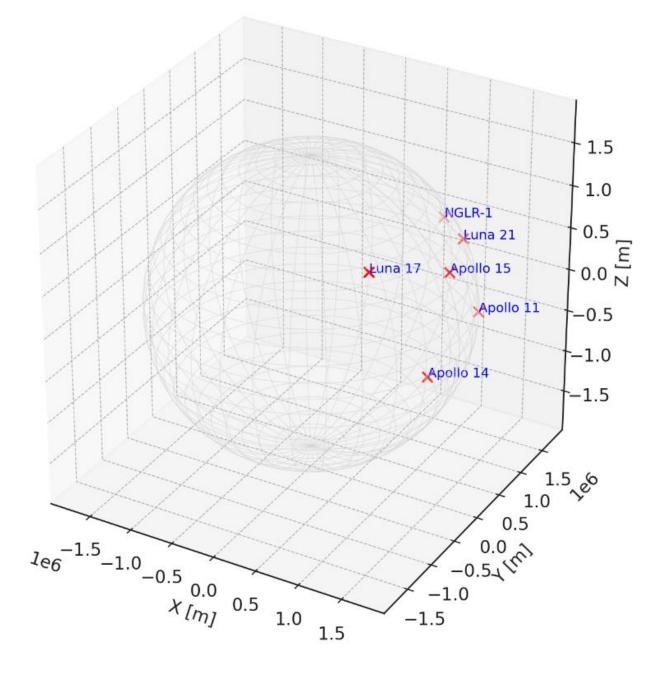

Mean retroflector positions and kinematic corrections were derived based on VCE weights

For ILRF, the errors are at the level of 2 cm (despite no parameter fit for retroreflector positions and kinematic corrections).

* DE430 was fitted up to 2012, other RFs - 2021.

Transformation parameters to PA and Mean Earth (ME) frames


Transformation formula (7-par. Helmert) based on lunar retroreflectors:



Mean errors of deriving transformation parameters are equal to **3.5**, **2.8**, **and 1.5 cm** for DE430, INPOP21a, and EPM2021, respectively; therefore, the accuracy of the transformation procedure at the level of 2-3 cm is considered sufficient for most of the lunar applications. The tranformation error to ME is **5 cm** (**7-parameters**) or 9 cm (**3-parameters** – rotations only).

Transformation parameters

Transformation parameters derived based on retroreflector positions in each RF.
The X-translation is highly correlated with the scale parameter due to the geometry of observations (r=-0.97).

Summary

Definitions for LRS and ILRF have been proposed. For the time system – many options for the definition are still possible.

The reference frame is based on a series of three contributing solutions: **DE430, INPOP21a, and EPM2021** combined using a modified version of **VCE** (for the 6D vectors including 3 translation parameters and 3 rotation, with constant weight to meet the requirement of a Keplerian motion according to Beutler et al., 1995).

The mean combination error is **17.6 cm for 2010-2030** with the dominating error coming from the origin (15.3 cm).

The LLR post-fit residuals in ILRF are at the level of **2 cm** for the last 10 years of LLR data.

The mean errors of the **transformation between ILRF** and other reference frame realizations in PA are at the level of **3 cm**, whereas the mean tranformation errors to ME frames is 5 cm.

Astronomy & Astrophysics manuscript no. output October 14, 2025

©ESO 2025

Definition and Realization of the International Lunar Reference Frame

K. Sośnica¹, A. Fienga², D. Pavlov³, N. Rambaux⁴, and R. Zajdel^{1,5}

- ¹ Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland e-mail: krzysztof.sosnica@upwr.edu.pl
- Observatoire de la Côte d'Azur, Université Côte d'Azur, CNRS, IRD, 250 avenue A. Einstein 06560 Valbonne, France
- ³ St. Petersburg Electrotechnical University, Faculty of Computer Science and Technology, ul. Professora Popova 5, 197022 St. Petersburg, Russia
- 4 Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, Laboratoire Temps Espace, LTE, F-75014 Paris, France
- ⁵ Research Institute of Geodesy, Topography and Cartography, Geodetic Observatory Pecný, Ústecká 98, Zdiby, 25066, Czechia Received October 10, 2025

Thank you for your attention

Krzysztof Sośnica

krzysztof.sosnica@upwr.edu.pl

Paper under review in Astronomy & Astrophysics

Definition and Realization of the International Lunar Reference Frame https://doi.org/10.48550/arXiv.2510.15484

https://geodesy.science/com1/structure/com-1-working-groups/joint-working-group-1-1/