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Relativity and high-accuracy observations
• Since decades, the accuracy of many kinds of observational data is many orders of magnitude higher

than the leading relativistic effects. This is especially true for atomic clocks!

• According to General Relativity,  time and frequency are affected by 
  
         (a) the motion of clock

    this is verified with very high accuracy
 
  (b) the gravitational potential at the location of the clock

   this is verified to 2.5×10−5  (Galileo satellites on eccentric orbits)

• General Relativity must be used to model the data!

   è Not just “small corrections” to Newtonian models: the whole relativistic paradigm should be used!   



The IAU 2000 framework
A framework of a hierarchy of relativistic reference systems that define algorithms to model observations

IAU 2000: Resolutions B1.3, B1.4, B1.5, and B1.9: See https://iau.org/Iau/Publications/List-of-Resolutions

Augmented by

IAU 2006: Resolution B2
     Resolution B3

This is based on a series of publications of a number of experts in General Relativity over about 20 years:
    Ashby, Bertotti, 1986 
    Kopeikin, 1988-
    Brumberg, Kopeikin, 1988-1992
                                Damour, Soffel, Xu, 1991-1994          Accuracy for frequencies better than 10−20

                                Klioner, Voinov, 1993
                                Klioner, Soffel, 2000

Explanatory supplement: Soffel et al, 2003: AJ, 126,  2687

https://iau.org/Iau/Publications/List-of-Resolutions
https://iau.org/Iau/Publications/List-of-Resolutions
https://iau.org/Iau/Publications/List-of-Resolutions
https://iau.org/Iau/Publications/List-of-Resolutions
https://iau.org/Iau/Publications/List-of-Resolutions
https://ui.adsabs.harvard.edu/abs/2003AJ....126.2687S/abstract


The IAU 2000 framework
• Two standard astronomical reference systems were defined

• BCRS (Barycentric Celestial Reference System)

• GCRS (Geocentric Celestial Reference System)

• These reference systems are defined by 
 

• the form of the corresponding metric tensors
• the 4D coordinate transformations between BCRS and GCRS

BCRS

GCRS



The IAU 2000 framework
• More than two reference systems were defined! 
   The same principles can and should be applied to any other body e.g. in the Solar system:

• BCRS (Barycentric Celestial Reference System)

• GCRS (Geocentric Celestial Reference System)

• XCRS: a physically optimal relativistic reference system for any body 

              in the Solar System (massive bodies or also massless observer): IAU 2024 Resolution II

   “LCRS” for the Moon, “MarsCRS” for Mars, “MercuryCRS” for Mercury etc:

 use exactly the same formulas as for the GCRS, but substitute body’s parameters instead of the Earth’s ones

BCRS

GCRS Local RS
of an observer

Lunar CRSMars CRS… CRS

https://drive.google.com/file/d/1-Ps-YyCjmjzg2NGi0A-VE0kWqr8w7LnE/view
https://drive.google.com/file/d/1-Ps-YyCjmjzg2NGi0A-VE0kWqr8w7LnE/view
https://drive.google.com/file/d/1-Ps-YyCjmjzg2NGi0A-VE0kWqr8w7LnE/view


Two kinds of times in General Relativity
1. Coordinate time: 

 one of the 4 coordinates of a 4-dimensional relativistic reference system

 - defined for any 4D event in the region of space-time covered by that reference system
- different coordinate times can be transformed one into another (4D transformations!)

- examples: TCB (TDB) and TCG (TT, UTC, TAI) 

                         BCRS position of the event

2. Proper time 𝜏 of an observer: 

 reading of an ideal clock located and moving together with the observer

 - meaningful only for a specified observer:        “obs”
- can be related to any coordinate time
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1. We scale TCG to TT to have ”no drift” relative to an ideal clock on the geoid:  TT = (1−LG) TCG

2. We scale TCB to TDB to have the same rate of TDB and TT at the geocenter: TDB= (1−LB) TCB + TDB0

At the geocenter one considers an approximate split:      TCG = TCB + “secular drift” + “periodic terms”

       

Small differences “TT−TDB” considered at the geocenter or ”close to it” can be ignored in many applications

Two time scales: two goals and two constants LB and LG to achieve these two goals…

The reasons to introduce the scaled times TT and TDB
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Further consequences of scaled coordinate times
An attempt to trick the physics and “kill” the main relativistic effects (time dilation and the redshift):

                                        dTT/dTDB is “almost 1” for events ”close to” the geocenter

- this scaling must be accompanied by the scaling of spatial coordinates AND mass parameters: 
  TT-compatible and TDB-compatible values vs physical values (= TCB- or TCG-compatible)

See e.g. Klioner, 2008, A&A, 478, 951     BCRS                GCRS

• time  

• spatial coordinates

• masses (µ = GM) of each body

   Quite some risk to mess up things in high precision modelling!
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The mass parameters µ = GM are the same in non-scaled BCRS and GCRS, but not the 
same with the scaled versions

The mass of the Earth:

TCB/TCG-compatible

TT-compatible

TDB-compatible

Each additional scaled coordinate time will add one more value of the Earth mass
and other parameters as well as  one more set of scaled spatial coordinates!

   A lot of risk to mess up things in high precision modelling!
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Scaled times at work: three masses of the Earth



The ideas behind the scaling of the coordinate times TCG and TCB:

1. We scale TCG to TT to have ”no drift” relative to an ideal clock at the geoid:  TT = (1−LG) TCG

2.     We scale TCB to TDB to have the same rate of TDB and TT at the geocenter: TDB= (1−LB) TCB + TDB0

Two time scales, two goals and two constants LB and LG to achieve these two goals…

Consider one additional time TCL for the Moon. A scaled version would be: TL= (1−LL) TCL

Whichever LL  is used, one cannot remove all linear drifts:

  TL has a linear drift either relative to TDB or relative to the proper time of a clock on a lunar “geoid”

One cannot kill two drifts with one constant LL !

BUT: If  LL ≠ 0, one gets an additional set of non-physical values of constants and spatial coordinates!   

With three coordinate times linear drifts persist!



A common misconception with the coordinate time scales

All these statements are WRONG:

  - TCB is ”the time in the barycenter of the solar system”
    - TCG is ”the time in the geocenter”
    - TCL is ”the time at the center of the Moon”
  - TT is “the time on the geoid”

CORRECT: all these time scales are defined for any location (event) within the Solar system!

A real clock put at the barycenter of the solar system would not show TCB (also the rate would be different)!
The same is true for TCG and the geocenter as well as TCL and the center of the Moon.



Possible misconception for the units of measurements

• The misconception: Only with the scaled time TT we use the SI second, i.e. “SI second on a geoid”

• The root of this confusion is the formulation in the old CCDS Resolutions on TAI (1980-1981) 

    “TAI is a coordinate time scale defined in a geocentric reference frame 
                                  with the SI second as realized on the rotating geoid as the scale unit” 

• SI second is a unit of proper time, defined as a procedure to implement it and 
   is independent on the position or velocity of the observer and equipment that implement it!

Think about an accurate clock on a spacecraft (e.g. ACES!): that clock also realizes the SI second! 



Possible misconception for the units of measurements

We always use the SI units with TCG, TCB, TT, TCB and any other quantities! 

Relativistic formulas like

  relate the quantities, not values. 

  If the same formulas are used for numerical values the same units should 
  be used on the left- and right-hand side of these equations!

   See Klioner, Capitaine, Folkner, Guinot et al. 2010

https://articles.adsabs.harvard.edu/pdf/2010IAUS..261...79K


One more possible misconception: “traceability to UTC”

No precise clock around the Moon

                                                                        ⇩ (correct)

                                      We must use Earth-bound clock to monitor the clocks near the Moon

                                                                    ⇩ (wrong!)

                  We can only realize an Earth-bound time (TT, UTC, TCG) with those Moon clocks

 - any clock measures its proper time (plus technical errors);
   no clock measures coordinate times like TT (UTC, TAI), TCB, TCG, …

-  clock reading must be recomputed into some coordinate time, before we can compare 
   two or more clocks at different locations (the concept of coordinate simultaneity – Allan, Ashby 1979)

-  To which coordinate time scale? To ANY we wish!

https://ui.adsabs.harvard.edu/abs/1979RaSc...14..649A/abstract


Conclusions for the Lunar Time
1. As proposed in the IAU 2024 Resolution 2:

 - define Lunar CRS (LCRS) in the IAU 2000 framework (all formulas are readily available)

 - TCL (Lunar Coordinate Time) is an integral part of LCRS

2. There is no scaling of TCL that removes linear drifts between all relevant coordinate and proper times

3. Introducing new ad-hoc scaling factors would imply new additional values 
    for the mass parameters and spatial coordinates: 
   one additional set of constants and spatial coordinates for each scaled coordinate time! 

      è Don’t scale TCL at all:  TL=TCL (+ const)



Backup slides



Linear drifts between time scales

Pair Drift per year 
(seconds)

Difference at J2023
(seconds)

TT-TCG 0.021993 1.011678

TDB-TCB 0.489307 22.508122

TCB-TCG @ geocenter 0.467313 21.496398



One can imagine several solution for the other bodies like Moon, Mars or Mercury:

1. Scale TCX with the SAME scaling factor as used for TT:  TX = (1−LG) TCX

  ✓  no additional values of mass parameters or spatial coordinates: TX-compatible ≡ TT-compatible
  ✘  significant linear drift of TX relative to TDB (at the center of body X)
  ✘ TX has a linear drift relative to the clocks on the body-centered analogue of geoid 

2. Scale TCX with the SAME scaling factor as used for TDB: TX = (1−LB) TCX

  ✓  no additional values of mass parameters or spatial coordinates: TX-compatible ≡ TDB-compatible
  ✘  significant linear drift of TX relative to TDB (at the center of body X)
  ✘  TX has a linear drift relative to the clocks on the body-centered analogue of geoid

          Godard, Budnik, Morley, Lopez, 2012 ç Analysis for BepiColombo around Mercury

Other coordinate times: to scale or not to scale?



3. Scale TCX with a special factor to remove the main part of the linear drift to TDB: TX = (1−LX) TCX

  ✘  new values of mass parameters and spatial coordinates: TX-compatible (one new for each body!)
  ✓  practically negligible linear drift of TX relative to TDB (at the center of body X)
  ✘  TX has a linear drift relative to the clocks on the body-centered analogue of geoid

4. Scale TCX with a special factor to remove the linear drift relative to the ideal clocks on 
     the body-centered analogue of geoid: TX = (1−LXX) TCX

  ✘  new values of mass parameters and spatial coordinates: TX-compatible (one new for each body!)
  ✘  significant linear drift of TX relative to TDB (at the center of body X)
  ✓  TX has NO linear drift relative to the clocks on the body-centered analogue of geoid

5. Don’t scale at all: TX = TCX

  ✓  no additional values of mass parameters or spatial coordinates: TX-compatible ≡ TCB/TCG-compatible
  ✘  significant linear drift of TX relative to TDB (at the center of body X)
  ✘  TX has a linear drift relative to the clocks on the body-centered analogue of geoid

Other coordinate times: to scale or not to scale?



Reference Systems in General Relativity
• Relativistic reference systems are coordinate charts that can be used to assign 4 numbers 

– coordinate time and three spatial coordinates – 

to any event in the region of space-time covered by that reference system.

• Relativistic reference systems are defined in the mathematical language of General Relativity:

    by the components of the metric tensor in these particular coordinates.

• One can use any reference system, but some of them are more convenient.

• One can find transformations between the coordinates 
in different reference systems.
 



Conclusions for the relativistic times
1. As proposed in the IAU 2024 Resolution 2:

 - Define Lunar CRS (LCRS) in the IAU 2000 framework (all formulas are readily available)

 - TCL (Lunar Coordinate Time) is an integral part of LCRS

2. Coordinate time scales for solar system any body can be easily computed numerically:
 e.g. https://gaia.geo.tu-dresden.de/TimeEphemerides/

3. Proper time of any clock can be recomputed into any time scale (and back)

4. There is no scaling of TCL or TCX that removes linear drifts between all relevant coordinate times

5. Introducing new ad-hoc scaling factors will produce new additional values 
    for the mass parameters and spatial coordinates (one set of many constants for each body!)

https://gaia.geo.tu-dresden.de/TimeEphemerides/
https://gaia.geo.tu-dresden.de/TimeEphemerides/
https://gaia.geo.tu-dresden.de/TimeEphemerides/


Conclusions for the relativistic times
1. As proposed in the IAU 2024 Resolution 2:

 - Define Lunar CRS (LCRS) in the IAU 2000 framework (all formulas are readily available)

 - TCL (Lunar Coordinate Time) is an integral part of LCRS

2. Coordinate time scales for solar system any body can be easily computed numerically:
 e.g. https://gaia.geo.tu-dresden.de/TimeEphemerides/

3. Proper time of any clock can be recomputed into any time scale (and back)

4. There is no scaling of TCL or TCX that removes linear drifts between all relevant coordinate times

5. Introducing new ad-hoc scaling factors will produce new additional values 
    for the mass parameters and spatial coordinates (one set of many constants for each body!)

https://gaia.geo.tu-dresden.de/TimeEphemerides/
https://gaia.geo.tu-dresden.de/TimeEphemerides/
https://gaia.geo.tu-dresden.de/TimeEphemerides/


Backup slides



Proper time scales and TCG
• Specially interesting case: an observer close to the Earth surface:
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Coordinate Time Scales: TT
• Idea: let us define a time scale linearly related to T=TCG, but which
  is numerically close to the proper time of an observer on the geoid:

• To avoid errors and changes in TT implied by changes/improvements
  in the geoid, the IAU (2000) has made LG to be a defined constant:

!"#$%&$&'&#"() "#≡ ×!"
• TAI is a practical realization of TT (up to a constant shift of 32.184 s)

• Older name TDT (introduced by IAU 1976) is fully equivalent to TT
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Coordinate Time Scales: TDB
• Idea: to scale TCB in such a way that the “scaled TCB” remains close to TT

  The IAU has [re-]defined TDB to be fixed linear function of TCB:

•    TDB to be defined through a conventional relationship with TCB:

• T0 = 2443144.5003725 exactly,

• JDTCB = T0 for the event 1977 Jan 1.0 TAI at the geocenter and
  increases by 1.0 for each 86400s of TCB,

• LB º 1.550519768×10−8,

• TDB0 º −6.55 ×10−5 s.
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Scaled BCRS: not only time is scaled

• If one uses scaled version TCB – Teph or TDB – one effectively uses 
  three scaling:

• time

• spatial coordinates

• masses (µ= GM) of each body

 WHY THREE SCALINGS?
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Scaled BCRS

• These three scalings 
   together leave 
   the dynamical equations 
   unchanged:

• for the motion of 
  the solar system bodies:

• for light propagation:



Scaled GCRS
• If one uses TT being a scaled version TCG one effectively uses 
  three scaling:

• time

• spatial coordinates

• masses of each body

• International Terrestrial Reference Frame (ITRF) uses such scaled 
GCRS coordinates and quantities

• Note that the masses are the same in non-scaled BCRS and GCRS… 
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Scaled masses
The mass [parameters] µ = GM are the same in non-scaled BCRS 
and GCRS, but not the same with the scaled versions

scaled BCRS (with TDB)

scaled GCRS (with TT)

The mass of the Earth:

TT-compatible

TCB/G-compatible

TDB-compatible
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The IAU 1991 Resolution A4
XXIst General Assembly, Buenos Aires, Argentina

• Discussing relativistic reference systems for the Moon and other bodies we don’t do anything new!

• IAU 1991 Resolution A4:

 - laid foundation for relativistic modelling in astronomy
 - was then drastically extended by the IAU 2000 framework

 - already discussed relativistic Barycentric and Geocentric Reference Systems and
    “analogous coordinate systems for other planets and for the Moon”

 - contain very precise formulations for the units of measurements of the spatial and time coordinates
          (this will be discussed separately)
    



Relativistic reference system in “cislunar space”
• “CISLUNAR” is lying between the Earth and the Moon or the Moon's orbit

• Which relativistic reference system to use?

  In principle, BCRS, GCRS and LCRS are all cover the cislunar space, but

  - the Geocentric CRS  (GCRS) is adequate for the vicinity of the Earth (physics of the Earth, Earth satellites)

  - the Lunar CRS  (LCRS) is adequate for the vicinity of the Moon (physics of the Moon, Moon satellites)

  - the BCRS can be used safely (and is being used to model the geocentric motion of the Moon!)
     (the normal Newtonian shift of the origin can of course be done)

• Is it possible to define something “better”, more specific for the cislunar space, as BCRS. 

 In principle “yes”, but we don’t do this and we don’t need this: 
  this would be against established procedures in solar system ephemerides and space dynamics!



Transformations of coordinate time scales in General Relativity
Coordinate time is one of the 4 coordinates of some 4-dimensional relativistic reference system

 - defined for any 4-dimensional event in the region of space-time where the reference
  system is defined

- examples: TCB (TDB) and TCX (any TCG-like: TCG, TCL, TT, UTC, TAI, ) 

                         BCRS position of the event

What if one ignores/neglects the position-dependent terms?

E.g. the Lorentz-contraction effects and their gravitational counterparts would make the shape of the 
central body variate depending on its barycentric velocity!  

direction of
velocity



Numerical computation of the TCG-like time ephemerides 
For any GCRS-like reference system for an arbitrary body ‘X’  (‘XCRS’) the transformation between ‘TCX’  and 
TCB evaluated at the origin of XCRS is the given by the same formulas:

u = TCX is the TCG-like time scale for a body ‘X ’ at its center of mass
t  = TCB



Numerical computation of the TCG-like time ephemerides 
u = TCX is the TCG-like time scale for a body ‘X ’ at its center of mass
t  = TCB

⇒ ⇒

Two ordinary differential equations with the initial conditions (e.g. t0 = 1 Jan 1977).

Very easy to integrate numerically given a solar system ephemeris and store the result as a set of Chebyshev 
polynomials: the time ephemerides for each body ‘X’



- The numerical integrations were computed using the 
  exported version of INPOP19a over 200 years centered on J2000

- For completeness the transformations were computed and
  published for all bodies from INPOP19a:

      Sun, Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn,
      Uranus, Neptune, Pluto

- The transformation from TCX to TCB and back are given for each body:

  deltaTCB(TCB)  as in  TCX = TCB + deltaTCB(TCB)

  deltaTCX(TCX)  as in  TCB = TCX + deltaTCX(TCX)

- The standard ASCII files with Chebyshev polynomials are available

Time Ephemerides TCX19a: https://gaia.geo.tu-dresden.de/TimeEphemerides/ 

https://gaia.geo.tu-dresden.de/TimeEphemerides/
https://gaia.geo.tu-dresden.de/TimeEphemerides/
https://gaia.geo.tu-dresden.de/TimeEphemerides/


Time Ephemerides TCX19a: https://gaia.geo.tu-dresden.de/TimeEphemerides/ 

https://gaia.geo.tu-dresden.de/TimeEphemerides/
https://gaia.geo.tu-dresden.de/TimeEphemerides/
https://gaia.geo.tu-dresden.de/TimeEphemerides/


Example: Mars and its “TCMar”

For each body we also publish 
plots of the differences between
TCX and TCB.

Both the results of a linear fit 
and the quasi-periodic rest 
are shown:



The main characteristics of the TCX for other bodies 
Body Approximate linear drift      

[ ×10-8 ]
Maximal amplitude of 
periodic terms     [ ms ]

Sun 0.000222 0.0076

Mercury 3.825 12.7

Venus 2.047 0.60

Earth 1.481       (≈ LC) 1.69

Moon 1.483 1.80

Mars 0.972 11.5

Jupiter 0.285 11

Saturn 0.155 18

Uranus 0.077 22

Neptune 0.049 5.5

Pluto 0.043 ∼100

Results from numerical
integrations using
INPOP19a
over about 200 years:

- very different drifts
   and periodic terms
   for different bodies!

- no way to define the linear
  drift exactly!

  it is always an approximation  
  depending on the exact
  receipt how the linear fit
  is computed! 

 



TCG from our numerical integration and INPOP19a 
The INPOP19a ephemeris includes the TCG-TCB transformation computed with the full dynamical model.

Here we can see the limitation of our simplified dynamical model consisting only of the 11 (major) bodies in the 
export version of INPOP19a: https://www.imcce.fr/recherche/equipes/asd/inpop/download19a 

Direct numerical comparison shows 
  - the deviation in the linear drift of ∼6.19×10−18   (no constant term is fitted!)
  - the long-term quasi-periodic effect with an amplitude of ∼0.15 nanosecond and a period around 180 yr
  - the quicker quasi-periodic terms with an amplitude of a few picoseconds

Note:

The fitted linear drift differs
from 

LC ≡ 1 − (1 − LB)/(1 − LG)

by    ∼2.8×10−15
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Time ephemerides for arbitrary ideal clocks
Proper time 𝜏 of any clock can be recomputed into any coordinate time scale (and back) as soon as 
the trajectory of a clock is known!

The very same formulas for “XCRF” can be used to this transformation!
Assuming the trajectory in BCRS is known:          and        are the position and velocity; t = TCB     

In general: f (t) is a function of the 
metric tensor of the corresponding 
XCRS and the trajectory of the clock.



Time ephemerides for arbitrary (ideal clock)

The very same formulas can be used to compute the relation of the “proper time” 𝜏 (reading of an ideal clock)
as soon as the trajectory of a clock in BCRS, GCRS or any XCRS is known.

Assuming the trajectory in BCRS is known:          and        are the position and velocity; t = TCB     

⇒ ⇒

Two ordinary differential equations with the initial conditions which 
should be given at some t0 for which the ephemeris of clock is known:  



Time ephemeris for Gaia Rb clock

- TG is the proper time of Gaia
  satellite: 
                 TG=“TCX”, for X=Gaia

- the same INPOP19a ephemeris is used

- the orbit is known in the period 
  from 2014 to 2025 (a Lissajous orbit
  around L2 of the Sun-Earth system)

- TG is defined to coincide with TCB at
  JD2457023.5 TCB
 
- the same representation as for all TCX   



The IAU 2000 framework
• Two standard astronomical reference systems were defined

• BCRS (Barycentric Celestial Reference System)

• GCRS (Geocentric Celestial Reference System)

• These reference systems are defined by 
 

• the form of the corresponding metric tensors
• the 4D coordinate transformations between BCRS and GCRS

BCRS

GCRS

   

g00 = −1+ 2
c2 w(t, x)− 2

c4 w2(t, x) +O(c−5),

g0i = − 4
c3 wi(t, x) +O(c−5) ,

gij = δ ij 1+ 2
c2 w(t, x)

⎛
⎝⎜

⎞
⎠⎟
+O(c−4 ) .

   

w(t, x) = G d 3 ′x∫
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+ 1
2c2 G

∂2

∂t2 d 3 ′x∫ σ (t, ′x ) | x − ′x | ,

wi(t, x) = G d 3 ′x∫
σ i(t, ′x )
| x − ′x |

,

σ = T 00 +T kk( ) / c2 , σ i = T 0i / c, T µν is the BCRS energy-momentum tensor

   

G00 = −1+ 2
c2 W (T , X )− 2

c4 W 2(T , X ) +O(c−5),

G0a = − 4
c3 W a (T , X ) +O(c−5),

Gab = δ ab 1+ 2
c2 W (T , X )

⎛
⎝⎜

⎞
⎠⎟
+O(c−4 ).

     

WE = G (−1)l

l!l=0

∞

∑ M L ∂L

1
| X |

+ 1
2c2
M L ∂L | X |

⎡

⎣
⎢

⎤

⎦
⎥ +

4
c2 λ,T +O(c−4 ),

WE
a = −G (−1)l

l!l=1

∞

∑ MaL−1∂L−1

1
| X |

+ l
l +1
abcScL−1∂bL−1

1
| X |

⎡

⎣
⎢

⎤

⎦
⎥ − λ,a +O(c−2 )

     

M L(T ) ≡ d 3 X
E∫ X̂ LΣ + 1

2(2l + 3)c 2

d 2

dT 2 d 3 X
E∫ X̂ LX2Σ − 4(2l + 1)

(l + 1)(2l + 3)c 2

d
dT

d 3 X
E∫ X̂ aLΣa ,

SL(T ) ≡ d 3 X
E∫ ab<cl X̂ L−1>aΣb ,

Σ = T 00 +T aa( ) / c2 , Σa =T 0a / c,

T αβ is the GCRS energy-momentum tensor



The proposal for the IAU 2024 Resolution 2
The principles of the IAU 2000 Framework are applied
to the Moons to define:

- Lunar Celestial Reference System  (LCRS)
- Lunar Coordinate Time (TCL)



Numerical computation of the TCG-like time scales 
u = TCX is the TCG-like time scale for a body ‘X ’ at its center of mass
t  = TCB

⇒ ⇒

Two ordinary differential equations with the
initial conditions (e.g. t0 = 1 Jan 1977).

For this what is done for Gaia in Gaia DPAC.

Very easy to integrate numerically given a solar system 
ephemeris and store the result as a set of Chebyshev 
polynomials: the time ephemerides for each body



The IAU 2000 framework

Explanatory supplement: Soffel et al, 2003: AJ, 126,  2687 



Numerical computation of the TCG-like time scales 
𝜏  is the TCG-like time scale for a body ‘o’ at its center of mass
t = TCB

⇒ ⇒

Two ordinary differential equations with the
initial conditions (e.g. t0 = 1 Jan 1977).

Very easy to integrate numerically given a solar system 
ephemeris and store the result as a set of Chebyshev 
polynomials: the time ephemerides for each body



The main characteristics of the TCG-like for other bodies 
Body Approximate linear drift      

[ ×10-8 ]
Amplitude of the main 
periodic term      [ ms ]

Mercury 3.825 12.7

Venus 2.047 0.57

Earth 1.481       (≈ LC) 1.66

Moon 1.483 1.75

Mars 0.972 11.5

Jupiter 0.285 11.0

1.  The linear drifts are different for different bodies: from 0.19 LC to 2.59 LC .

2.  The amplitude of the main period term comes from the elliptic motion of the body around the Sun
     and proportional to  𝑒 𝑎	 where a is the semi-major axis and e is the eccentricity of the heliocentric orbit:
   

     the amplitudes ranges from  0.3 to 7.7 of the effect for the Earth (1.6 ms).

Results of numerical
integration using
INPOP19a
over about 60 years. 



Example: the timing system of Gaia
- Gaia satellite has an atomic Rb clock on board (1.5 million km from the Earth)

- That clock is a free oscillator that needs to be synchronized to TCB (the time scale used in Gaia)

- Clock calibration for Gaia: one-way time transfer:

Gaia clock:
OBTk

Ground clock:
UTCk

onboard 
delay

propagation 
delay

station
delay

Phase Array Antenna

Rb clock counting
On-Board Time (OBT)

ESTRACK dish

OBSERVATIONAL DATA:
Time Couples ( UTCk, OBTk )



Gaia clock:
OBTk

Ground clock:
UTCk

on-board 
delay

propagation 
delay

station
delay
+ UTC/TT

OBTk
emission

TTk
reception

relativity

TCBk
receptionTCBk

emission

relativity

TGk
emission

Clock 
parameters

relativity

“Gaia Time” (TG) is 
the proper time of Gaia

Example: the timing system of Gaia
- A relativistic modelling of the observable time couples:

- Gaia clock are synchronized with TCB and realized TCB on board of Gaia

Measured frequency 
of the Gaia clock


