The relation between the numbers M_{r} and B_{j}

by Jörg W. Müller
Bureau International des Poids et Mesures, F-92310 Sèvres

In our recent study [1] on alternate sums of powers of integers, i.e. of sums of the type

$$
\begin{equation*}
\mathrm{r}_{\mathrm{n}} \equiv \sum_{\mathrm{j}=1}^{\mathrm{n}}(-1)^{\mathrm{j}} \mathrm{j}^{\mathrm{r}}, \quad \text { with } \mathrm{r}=1,2, \ldots, \tag{1}
\end{equation*}
$$

it was shown that they can be expressed in the form

$$
\begin{equation*}
\mathrm{r}_{\mathrm{n}}=\sum_{j=1}^{r-1} r_{j}^{\mu_{j}} t^{j}+\frac{1}{2}(-1)^{n}(2 t)^{r} \tag{2}
\end{equation*}
$$

where $t=\left[\frac{n+1}{2}\right]$ is given by the number of terms in (1), while r_{j} are coefficients that have been tabulated.
We found that these coefficients can be expressed by the "basic" integers $M_{r} \equiv r_{1}{ }_{1}$, since

$$
\begin{equation*}
r_{j}=\frac{2^{j-1} r!}{j!(r-j+1)!} M_{r-j+1}, \quad \text { for } r>j \tag{3}
\end{equation*}
$$

The alternate sum (1), written in powers of t, thus begins for r even with

$$
\begin{equation*}
\mathrm{r}_{\mathrm{n}}=\mathrm{M}_{\mathrm{r}} \mathrm{t}+\mathrm{r}_{\mathrm{r}} \mathrm{t}^{2}+\ldots, \tag{4}
\end{equation*}
$$

whereas for r odd there is no term proportional to t.
It appears that the numbers M_{r} play a role similar to that of the well-known Bernoulli numbers B_{j} which occur in the study of the sums

$$
\begin{equation*}
\mathrm{r}_{\mathrm{n}} \equiv \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{j}^{\mathrm{r}} \tag{5}
\end{equation*}
$$

Some similarities between the numbers B_{j} and M_{r} have already been noted in [1], but it has not been possible to establish a clear link between the two series. It is the purpose of the present Note to make up for this deficiency. Some familiarity with [1] will make the reading easier.

The idea is to use the fact that the numbers M_{r} are the coefficients of t, as shown in (4). If we can subdivide ${ }_{r} Z_{n}$ into a sum of contributions of type ${ }_{r} S_{n}$ and determine the coefficients of the linear terms t (in which the Bernoulli numbers occur), it must be possible to obtain the required relation by comparison of the respective coefficients.

Let us begin by decomposing the alternate sum (1) in a suitable way - the very rearrangement we tried to avoid in [1]. Since n is even, we can put $n / 2=t$. Then

$$
\begin{align*}
\mathrm{r}_{\mathrm{n}} & =\sum_{j=1}^{\mathrm{t}}(2 j)^{r}-\sum_{j=1}^{t}(2 j-1)^{r} \\
& =2^{r} \sum_{j=1}^{t} j^{r}-2^{r}\left(\frac{1}{2}\right)^{r} \sum_{j=1}^{t} \sum_{k=0}^{r}\binom{\mathbf{r}}{k}(-2)^{k} j^{k} \\
& =2^{r}{ }_{r} S_{n}-\sum_{k=0}^{r}\binom{r}{k}(-2)^{k}{ }_{k} S_{n} \\
& =-\sum_{k=0}^{r-1}(\underset{k}{r})(-2)^{k}{ }_{k} S_{n} \tag{6}
\end{align*}
$$

Let us now look at the development of a Bernoullian sum r_{n}. From relation (23) given in [1] we conclude that, for $r \geq 2$ and even,

$$
\begin{equation*}
\mathrm{r}_{\mathrm{n}}=\ldots+\frac{1}{\mathrm{r}}(\underset{\mathrm{r}-1}{\mathrm{r}}) \mathrm{B}_{\mathrm{r}} \mathrm{t}^{\mathrm{r}+1-\mathrm{r}}=\ldots+\mathrm{B}_{\mathrm{r}} \mathrm{t} \tag{7}
\end{equation*}
$$

We note in passing that ${ }_{r} S_{n}$ with r odd has no terms proportional to t as the development stops at t^{2}, exactly as for Z_{n}.

The two cases with $r=0$ and $r=1$ appearing in (6) have to be treated separately.
One finds

$$
0_{0} S_{n}=t
$$

and

$$
\begin{equation*}
{ }_{1} S_{n}=\frac{1}{2} t+\frac{1}{2} t^{2} \tag{8}
\end{equation*}
$$

A look at (4) shows that the value of M_{r} can be obtained from (6) by assembling the coefficients of t appearing in ${ }_{k} S_{n}$. Writing (6) as

$$
\begin{equation*}
\mathrm{r}_{\mathrm{n}}=-{ }_{0} S_{n}+2 r_{1} S_{n}-\sum_{k=2}^{r-1}\binom{r}{k}(-2)^{k}{ }_{k} S_{n} \tag{9}
\end{equation*}
$$

we find, with (7) and (8),

$$
\begin{align*}
M_{r} & =-1+2 r \frac{1}{2}-\sum_{j=2}^{r-1}\binom{r}{j}(-2)^{j} B_{j} \\
& =r-1-\sum_{\substack{j=2 \\
\text { (even) }}}^{r-2} 2^{j}\binom{r}{j} B_{j} \tag{10}
\end{align*}
$$

This is the relation looked for. It shows that the two series of numbers M_{r} and B_{j} are indeed closely linked, and relation (10) is even somewhat reminiscent of the recurrence formula (18) found previously in [1]. It may be worthwhile noting that the sum in (10) yields an even integer.

Let us check (10) with three practical applications.

- For $=8$:

$$
\begin{aligned}
\mathrm{M}_{8} & =8-1-\sum_{\mathrm{j}=2}^{6} 2^{\mathrm{j}}\binom{8}{\mathrm{j}} \mathrm{~B}_{\mathrm{j}} \\
& =7-\left[2^{2}\binom{8}{2} \mathrm{~B}_{2}+2^{4}\binom{8}{4}+2^{6}\binom{8}{8} \mathrm{~B}_{6}\right] \\
& =7-\left[\frac{428}{6}-\frac{1670}{30}+\frac{6428}{42}\right]=-17
\end{aligned}
$$

- for $r=10$:

$$
M_{10}=10-1-\sum_{j=2}^{8} 2^{j}\binom{10}{j} B_{j}=\ldots=155 ;
$$

- for $r=12$:

$$
M_{12}=11-\sum_{j=2}^{10} 2^{j}\binom{12}{j} B_{j}=\ldots=-2073 .
$$

All these results agree with the numerical values given in [1].
Obviously, the existence of the new relation (10) does not mean that the numbers M_{r} become superfluous; their practical usefulness is obvious in [1]. In any case, (10) is a very useful tool for their numerical evaluation, since it is a simple relation making use only of the Bernoulli numbers, which are readily available in tabular form, for example up to B_{60} in [2].

References

[1] J.W. Müller: "Sums of alternate powers - an empirical approach", Rapport BIPM-94/14 (1994)
[2] "Handbook of Mathematical Functions", ed., by M. Abramowitz and I.A. Stegun, NBS, AMS 55 (GPO, Washington, 1964)
(January 1995)

