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Aigebraic rearrangements are invariably dull to perform. In addition, they require 

permanent attention if we want to avoid any error that would render the final result 

useless. Occasionally, one encounters in such calculations a small problem which may be 

worth a few moments' thought. 

Thus, in the lengthy attempt to evaluate parities for observed counts, when the original 

Poisson process has been distorted by an extendable dead time, a problem was met 

which involves summing over alternate moments, defined [1] by 

(1) 

If the probabilities Pk follow the Poisson law (with me an value p), the moment of order 

r ~ 1 is known [1] to be 

+ mr 
2 r . 

e- \1 L S(r,j) (-pi 
j=l 

where S is a Stirling number of the second kind [2]. 

In the problem encountered, the expression to be evaluated is of the form 

F = r~ (r-l) ± 
.k. j mj+l' 
J=O 

which can be rearranged to become 

2 j+l k 
F =: e- \1 L (-p) T(r,k) , 

k=l 

where 

is now the quantity in which we are interested. 

(2) 

(3) 



2 

Consider, for the sake of curiosity, both the binomial coefficients and the Stirling 
numbers as triangular matrices of infinite order. In a simplified notation, these are 

1 

1 1 

~ = 1 2 1 

1 3 3 1 - r=4 

1 4 6 4 1 

. • • 

and 

k=2 

! 

1 

1 1 

§ = 1 3 1 

1 7 6 1 

1 15 25 10 1 

• • • 

where we have put (8) = 1 and omitted the Stirling numbers SO,O) as they are not 

needed in (3). 

If we choose, for example. the values r = 4 and k = 2, the evaluation of T(4.2), according 
to (3), involves pairwise multiplication of the terms within rectangles in the above 
matrices. It is readily seen that this corresponds to a matrix multiplication; hence we 
can write symbolically 

T = BxS 

where l is now also a matrix. 

If we evaluate, for a few arguments. the numerical values of T(r,k), we find the 
coefficients assembled in Table 1. 

(4) 
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Table 1. Sorne numerical values of T(r,k). 

k = 1 2 3 4 5 6 

r=l 1 

2 2 1 

3 4 5 1 

4 8 19 9 1 

5 16 65 55 14 1 

6 32 211 285 125 20 1 

A doser inspection of Table 1 reveals that its values follow a simple recurrence 

relation*, namely 

T(r,k) = (k+l) T(r-l,k) + T(r-l,k-l) . 

This reminds us of the fact that there exist similar recurrences for the binomial 
coefficients and for the Stirling numbers. These are known to be 

B(n,k) B(n-l,k) + B(n-l,k-l) 
and 

S(n,k) k S(n-l,k) + S(n-l,k-l) , 
respectively. 

(5) 

(6) 

A comparison with (5) and (4) immediately rais es the question whether the "transfer' of 
recurrences is a general feature of matrix multiplication. 

To approach this problem, consider a general matrix multiplication A x ~ = Q and start 
with the assumed recurrences 

A.. = cxI A. 1 . + cx2 A. 1 • l ' IJ 1- J 1- J-

Bj,k = ~I Bj_l,k + ~2 Bj-I,k_l . 

* Note that the quantities T(r,k) are identical with coefficients that have been listed before in another 
context [31. and which were then denoted by ~.(r,2). The correspondence is ~ . Cr,2) = T(HI, j+l). 

(1) 

J J 
In fact, it now turns out that aU the coefficients evaluated in [31 aUow simple recurrences, namely (in the 
original notation) 

a .(r,t) = t a .Cr-I,t) + a
j 

l(r-I,t) 
J J . 

~ . (r,t) = (j+t) ~.(r-l,t) + ~ . I(r-I,t) , 
J J J' 

and 

a property which has not been recognized previously. These relations also provide a convenient means for 
checking the numerical values. 
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This gives for the element Ci k of the product matrix , 

C' k = 2 A· B' k l, . IJ J, 
J 

= ~ (al ~-lj + a2 Ai-lj-l ) (~l Bj-l,k + ~2 Bj-l,k-l) 
J 

(8) 

As expected, we return to the situation given in (5) by putting al = a
2 

= 1, ~l = k and 

~2 = 1. 

It is interesting to note in (8) that the coefficients y, for the product element 

involve not only sums, but also products of the coefficients a and ~. The coefficients y 

are thus not symmetric in a and ~. 

(9) 

It may therefore be worthwhile also to consider triple recurrences, i.e. relations of the 
form 

= al Al' + a2 A· 1 . 1 + a3 Al' 2 1- J 1- J- 1- J- , 

(10) 

Bj,k =:: ~1 Bj-l,k + ~2 Bj-1,k-1 + ~3 Bj-1,k-2 . 

After a similar, although longer calculation, we can show that the form of the product 
element C. k is 

l, 

Ci,k =:: [al + ~l (~ + a3~1) ] Ci-l,k + ~2 (a2 + 2a3~1) C i- l ,k-1 

+ [~3( a2 + 2a3~1) + a3~~] C i-1,k-2 + 2 a3~2~3 C i-l ,k-3 + a3~; C i-l ,k-4 (11) 

Obviously, for a3 =:: ~3 = 0 this reduces to (8). 
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It is worth noting that not only the new coefficients y, introduced in (9), become more 
complicated, but also that their number no longer agrees with those of a and ~. 

1 have just been informed by Mme M. Boutillon, a colleague at the BIPM, that the 
following general rule holds: If the recurrence formulae for both A and B have m terms 
(in a and ~), the recurrence for C includes (m-1)2+1 terms (y). 

This nice result explains why we find five terms in the product of triple recursions 
(m=3). In addition, it shows that only in the case of a double recursion (m=2) - the case 
m = 1 is of no interest - the elements of the product matrix have the same number of 
terms in the recurrence. 
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