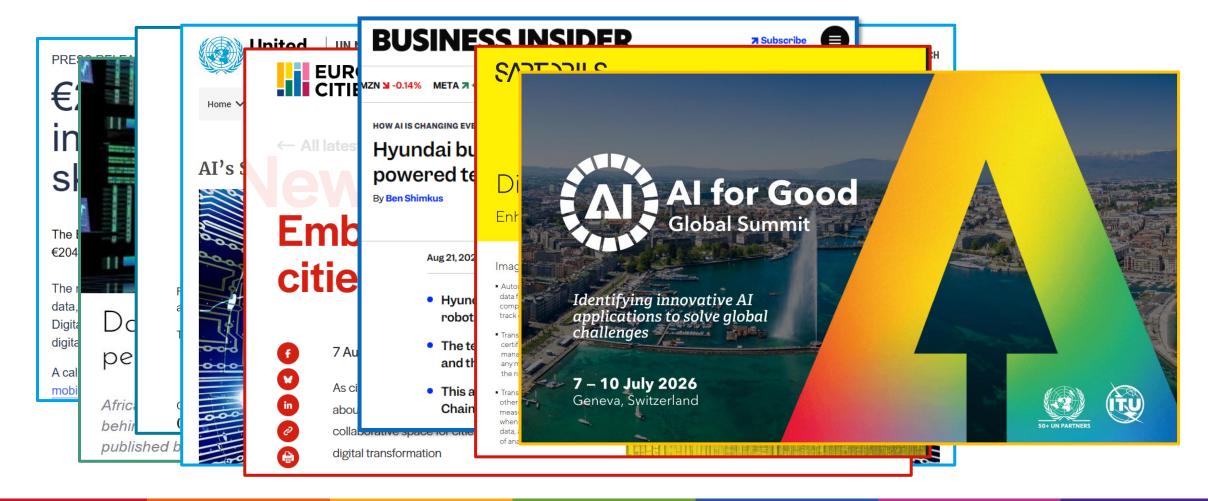


Digital transformation of metrologyThe Forum Digitalization and Metrology


Prof. Dr. Cornelia Denz | CIPM member and President, Physikalisch-Technische Bundesanstalt (PTB) | The National Metrology Institute of Germany

24th Meeting | Directors of NMIs and Member State Representatives
October 16-17, 2025 | Day 2

Digitalization in metrology | A hot and timely topic

Digitalization is important world-wide as a true cross-cutting theme

Digitalization in metrology | A change in three acts

The formation of digital technologies with new ecosystems, business models, and markets

Digitalization in metrology | A transformative change

Since 150 years, metrology has long-established principles

- World-leading science by defined units
- Realizations in practice with smallest uncertainties
- Traceability to reliable reference standards
 - ► Trust for science, industry, society

The role of digitalization in metrology

- Need for precise, trustworthy measurements of SI
 - Transfer to the digital representation of the SI
- Services for industry in applied areas
 - **▶** Digital quality certificates & digital twins
- Timely research in emerging metrological fields
 - Smart networks connected to the use of AI

Metrology for digitalization | Digital ecosystem

Why is a digital metrological ecosystem including QI is needed?

- Starting point: transition to digital data formats > Eliminating paper-based workflows
- Digital transformation also includes data
 Data quality metrics across systems
 - ► Must be interpretable, exchangeable, and verifiable across systems
 - ► A digital ecosystem is an enabler ► Metrology needs cross-discipline structure

Contents | Three episodes on a holistic, horizontal forum

Forum MD's mission

- Motivation & purpose
 Terms of Reference
- Forum MD organs, structure & members

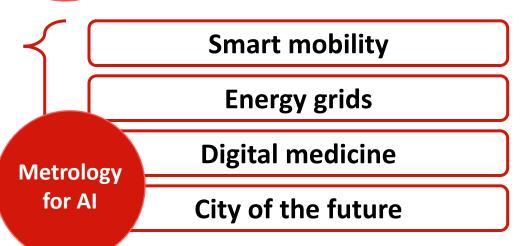
Activities of Forum MD

- Forum MD workshops
- Forum MD Highlights

Future visions

- Perspectives & strategic development
- Draft resolution for CGPM 2026

The impact of metrology | From digitalization to Al


Classical metrology fields: The need for clear regulations

- Digitalization of components and devices
- Conformity assessment in regulated areas of legal metrology and in services for industry
 - ► AI may become a tool for metrology

Electricity Heat Heat ...

Emerging fields: Assessment of quality

- Open questions on traceability, uncertainty, and on harmonization of digitized systems
- Combination of digitalization with Al
 - Metrology may develop metrics for Al

Early CIPM Vision in digitalization

Transforming the SI for a digital world

... ensure that the Metre Convention naturally extends its role as the globally accepted anchor of trust for metrology into the digital era ...

Resolution 2 of the 27th CGPM (2022)

- Adoption of FAIR principles in digital metrological data
- Creating a digital reference point of the SI
- Facilitating the use of digital certificates
 - Digital transformation of all important services of BIPM
 - Addressing emerging digital needs of CIPM member NMIs
 - Fostering a digital quality infrastructure
 - ► 1st "horizontal", interdisciplinary and cross-disciplinary Forum

Mission of Forum MD

To advise CIPM on the SI Digital Framework and on the wider implications of the global digital transformation for metrology and for the international digital Quality Infrastructure

Adoption of **FAIR principles** for metrological data

Providing metrological input in emerging areas

Create authoritative digital reference for core SI

Digitally transform services & products of BIPM

Consider implications of digitalization on CIPM-MRA

Objective 1:

To harmonize internal processes of digitalization of NMIs, CCs, RMOs, and services of BIPM

Objective 2:

To act as a forum to exchange information and to create synergies & opportunities for collaboration

Membership | Criteria and current members

CIPM Forum MD | Group structure

TG AI Build. Safe & Trustworthy AI

TG MS

Metrological Semantics

Ryan White (NRC)

WG CC

Coord. between CCs
Peter Blattner (METAS)

TG DQ & FPM

Data Quality & Fair Practices in Metrology

Daniel Hutzschenreuter (PTB) & Paul Duncan (NPL)

WG RMO

Coord. between RMOs

Nikita Zviagin (VNIIM, interim)

TG H-DCC DRMC

Louise Wright (NPL)

Harmonizing DCC & DRMC *Martin Koval (CMI)*

SI-digital Framework

Anna Cypionka (BIPM)

WG S

Strategy Cornelia Denz (PTB)

DG SN

Sensor networks
Shan Cui (NMC,A*STAR), Wan-Ho Cho (KRISS)

Strategy & tasks of Forum MD

Propose a **long-term vision** for Forum MD

Monitor and react to relevant developments in digitalization

Ensure an **effective linkage** between organizations in liaison

Advise the FORUM-MD on its optimal operational structure

Prepare plenary meetings, propose conferences & events

Common goals of task & working groups as understanding, use cases, dissemination

From a strong SI Digital Reference Point to a machine-actionable SI Reference Frame

Leverage synergies: within CIPM, CCs, RMOs, NMIs, include liaisons and stakeholders

Monitor development of FAIR data quality, digital certificates, semantic approaches, AI assessment

Workshops on emerging fields, General meetings, Discussion groups, potential **CGPM Resolution**

Activities of Forum MD | Workshops

Workshop every year at General Meeting or for special topics stand-alone

Metrological Traceability

August 28, 2024, Organizers: Blair Hall & Frank Härtig

- Foundational principles
- New developments
- Examples of certificates

Metrology for Complex Sensor Networks

February 11-12, 2025, Organizers: Shan Cui & C. Cho

- Defining sensor network
- Basic questions in SN
- Real-world examples

Meeting of NMI Directors and State Representatives

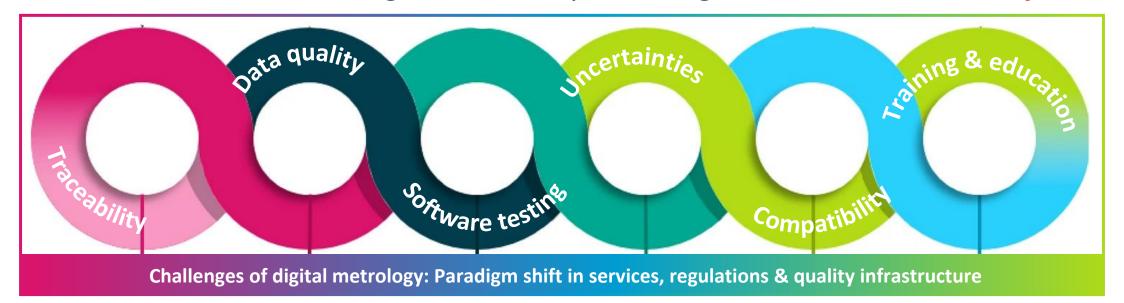
October 17-18, 2024
Organizers: BIPM & Chair Forum MD

- Digitalization FAIR data
- Digitalization Al
- Quantum Technologies

Emerging Topics in Digitalization of Metrology

February 19, 2025 Organizers: Chairs Forum MD

- Basic Themes of Al
- Digital data & tools
- Trustworthy Al

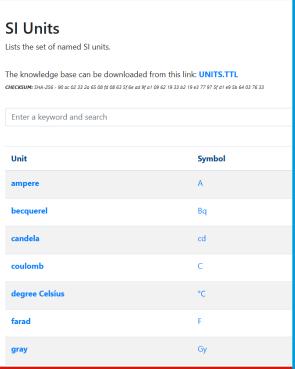


Metrology for digitalization | A multi-faceted task

Facets of quality in digitalization

- Fundamental key areas where digital metrology is necessary
 - ► Research for digital traceability ► International digital SI unit system & framework
 - ► Transformation of metrological services ► **Digital certificates** & product passports
 - ▶ Digital approaches to measurements ▶ Virtual metrology & digital twins
 - ► Establishment of metrological data analysis ► Large data bases & "Al-ready data"

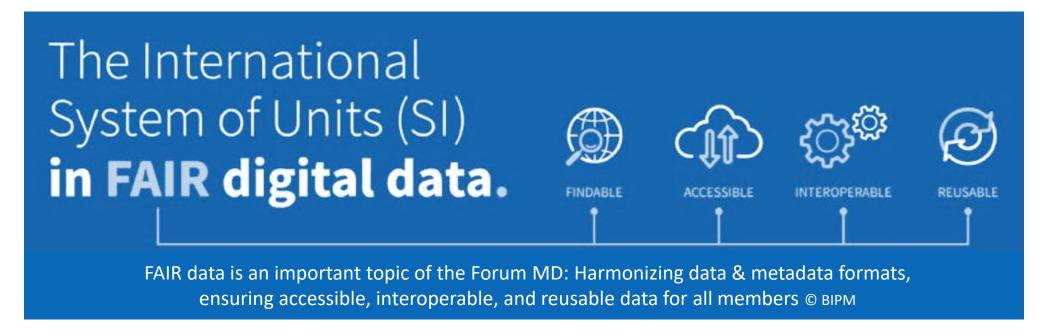
Task Group on SI-digital Framework



TG dedicated to the SI digital framework

- Provide input to SIRF & advice on SIDF
- Collaborate with CCs and RMOs

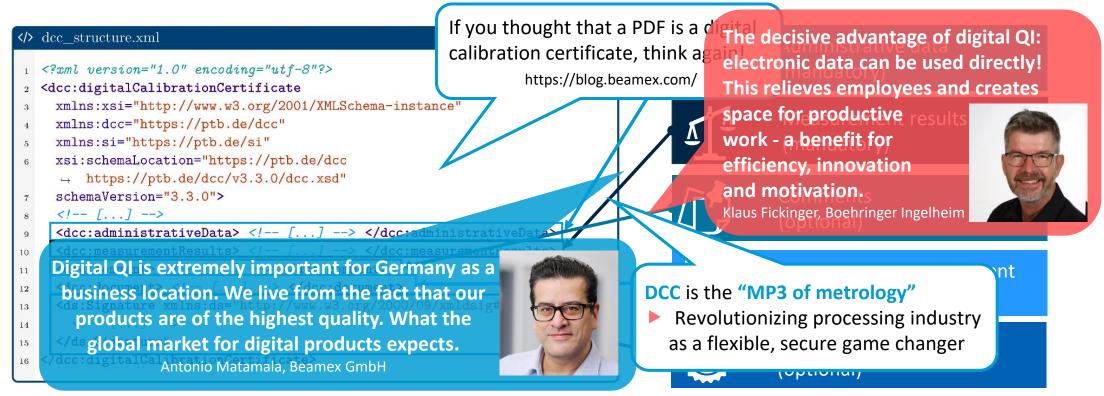
SI Reference Point This service constitutes the authoritative digital reference for the Interr the named SI units, SI prefixes, and defining constants, and a parsing to SI Reference Point Units Lists the named SI units Prefixes Lists the SI prefixes Defining Constants Returns the defining constants of the SI Decisions Returns the decisions of the CGPM and the CIPM bea part of the SI, and conventions for the writing of unit symbols and Quantities This service provides PIDs for the kinds of quantity included in the SI BI for compound quantities, and shows the related Service Categories in t Quantities Lists the kinds of quantity included in the KCDB. Quantity expressions A parsing tool to provide the PID and sema Service Categories This service shows the related service categories.


Quantities Lists the kinds of quantity included in the KCDB. The knowledge base can be downloaded from this link: QUANTITIES.TTL CHECKSUM: SHA-256 - 40 90 ft 73 fp ex 51 26 02 71 cx e8 1e 76 fe c8 c1 cx 98 ce bx 40 54 39 8f 88 ex by 66 e4 00 x0		
Quantity	PID (Quantity)	SI unit
absorbance		
absorbed dose		Gy
absorbed dose rate		${ m Gy~s^{-1}}$
acceleration		$\mathrm{m}\ \mathrm{s}^{-2}$
acoustic impedance		${ m Pa~s~m^{-3}}$
action		J s

Task group on data quality & FAIRness

TG dedicated to all aspects of data and its metrological standards

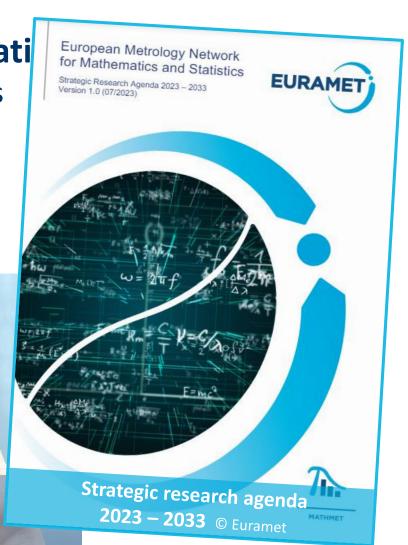
- Disseminating FAIR data use in research and industry-related data infrastructures
- Develop data quality metrics "fitness for purpose" assessment of data
- Harmonizing existing standards full advantage of quality, traceability, uncertainty
 - ► Agreed framework for data quality from the viewpoint of metrology



Task group on DCC and DRMC

Flagship DCC | Transfer to DX-Family | High acceptance in industry

- Machine-usable modular format ► Inspection by human or "digital metrologic experts"
- Machine-interpretable use for data analysis, digital twins, AI Machine communication


Task group on metrological semantics

Digitalization requires new analytical and computati

- Conceptual & provenance models, semantic architectures
- Inverse problems for modeling indirect measurements
 - ▶ **Digital twins** of for predictive maintainance
 - ► Data analysis & uncertainties of complex systems
 - Explainability & robustness of artificial Intelligence

Task group data quality & FAIR data aspects

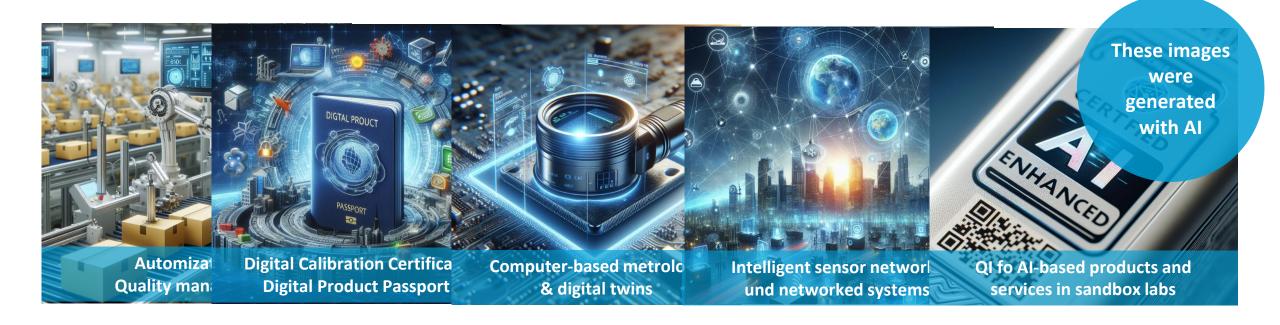
Quality assurance of data | The usability of data for data-based metrology

- Quality dimensions > Accurate, complete, compliant, consistent, credible, relevant, timely
- The quality of AI strongly depends on data
 - ▶ Data uncertainty ("noise", "bias")
 - ► Annotation inconsistencies ("label noise")
- Knowledge about composition of data increases robustness, facilitates interpretation
 - Define metrics to assess data quality
- Constructing reference training datasets
 - Validating training data ("audit")
 - Designing test data

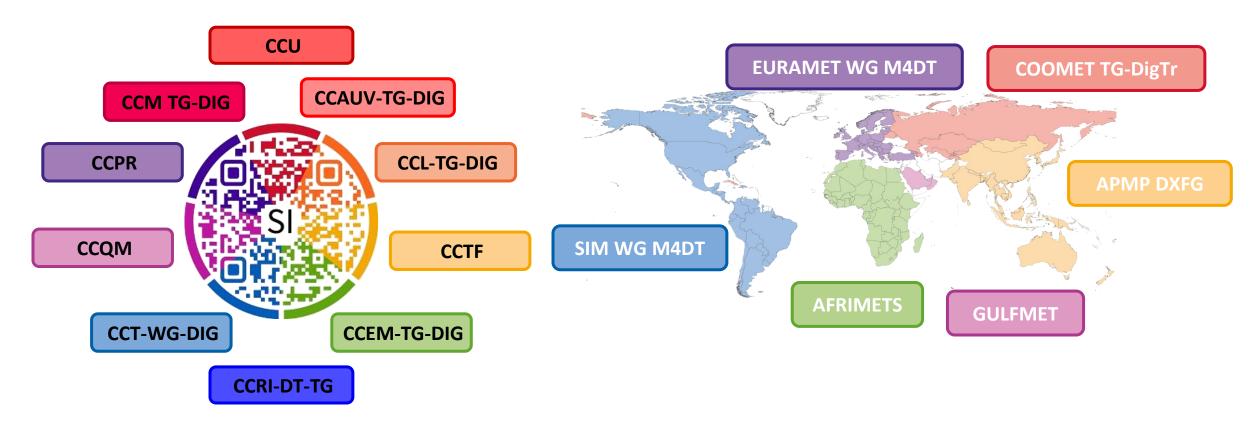
Discussion group on sensor networks

Emerging metrology needs in complex systems

- Large heterogenous networks
 - Responsive, adaptive, self-organized
 - Uncertainties needs to be defined
 - Quality of data needs to be assessed
 - Self- and co-calibration approaches
 - Self-traceability by use of massive Al
- Examples of sensor swarm applications
 - Gas detection wearables for safety
 - Spatio-temporal climate monitoring
 - Sensitive electric / magnetic field detection



Task Group on Building Safe and Trustworthy AI H BIPM


Al for Metrology – Metrology for Al

- Use of AI for metrology > Automation in services as e.g. DCC or comparisons
- Trust in AI through metrology > Define traceability, uncertainties, data quality
- Evaluation of existing legislation > Standardisation and test procedures for EU AI Act
- Precondition for all AI applications and tests is digitalization & quality of data

Highlights of Working Groups

- Digitalization TG in almost all CCs
- Strong interaction with TG-SIDF

- Analysis of status & needs in aspects of digitalization
- High interest in FAIR data & tools as DCC

Frontiers for digitalization | Easing metrology tasks

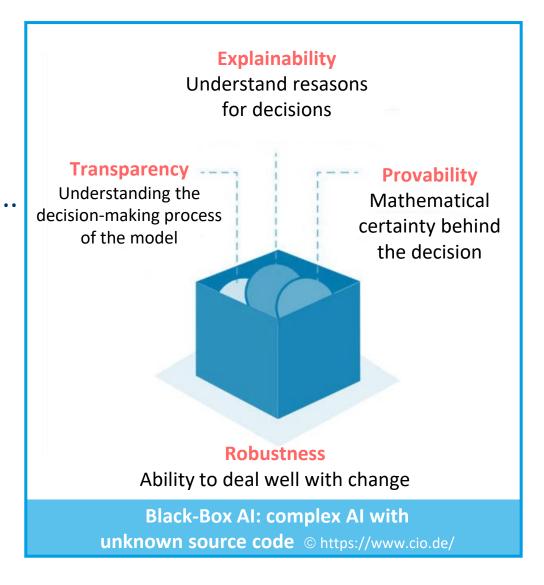
Digital metrological experts concept

- Taking over tedious human work in
 - Calculation of measurands
 - **►** Evaluation of comparisons
- Exchange of information related to QI
 - ► SI-based data and FAIR services
- Assess data and propose ways of processing
 - ► Verification, filter, uncertainty propagation
- Creates machine-actionable reports
 - Disclosing traceability of outputs to inputs
- Is itself a digital stakeholder in QI
 - ► When operated and maintained by an authorative organization

Frontiers for Al | Assessing quality of Al

Assesment of algorithms of Al

- Investigation of bias and stereotypes
 - ► Definition of clear metrics for evaluating AI: Robustness, explainability, transparency, controllability, customisability, confidentiality, ...
 - ▶ Data as 'black box' test instruments
- Creation of reference data sets for quality standards of learning in complex scenarios
 - ▶ Development of accurate, verified "ground truth" data ▶ Trustworthy "golden" data e.g. by physics-informed learning



Data quality

Frontiers for Al | Creating a quality infrastructure for Al

Digital QI 2.0 | Quality infrastructure including AI: AI QI

- Development of an efficient Al-supported digital QI
 - Quality metrics for digital measurement data
 - ► Assessment of Al by making "black box" transparent

Establishing a machine-interpretable QI

- Digital metrological experts / avatars
 - Reduction of market barriers
 - Process acceleration

Establishing a QI for machine learning

- Conformity assessment of robotics application
 - ► Efficiency and quality gains in industry

Recalling that

- resolution 2 adopted by the CGPM at its 27th meeting "On the global digital transformation and the International System of Units" encouraged the CIPM to extend the Metre Convention to an anchor of trust for metrology into the digital era,
- the accelerating pace of digital transformation is intrinsically linked to data as a key
 asset for the future, to the widespread deployment of sensor networks enabling
 sophisticated digital ecosystems, and to the integration of artificial intelligence
 across all areas of metrology
 - ► Further digital transformation needs to be **global**, inclusive, participative
 - ► Ensures role of metrology in accelerated pace of digital transformation, being a cornerstone of industrial development and continuous prosperty world-wide
 - ► Resolution "On the further digital transformation of global metrology"

Recognizing strong achievements in digital transformation

- Significant progress in the development of comprehensive digital metrological concepts and tools including the implementation of the SI reference point, the promotion of FAIR data, as well as the introduction and dissemination of digital certificates,
- Establishment of a global network of collaboration has been established, engaging a broad spectrum of stakeholders, aimed at harmonization all dimensions of digitalization,
- FORUM MD has successfully brought together the international metrology community to discuss topics of future relevance, demonstrating its power of strategic foresight and its capability to respond to emerging digital challenges and opportunities,

Further coordinated efforts are necessary

- United efforts of CIPM, BIPM and its structures, RMOs, NMIs to address long-term challenges associated with strong pace of digitalization
 - Machine-actionable access to all services of CIPM MRA
 - Dissemination of digitalization practices to empower all countries to enter into own digital transformation
 - Adressing global challenges associated with digitalization of societies needs coordinated approach in the measurement community and quality infrastructure

Benefit of coordinated, responsible standardization and harmonization

- Economic growth and industry reach next level of automation
- Use potential of artificial intelligence to transform society for the better
 - Inclusive healthcare, reshaping work, improving complex decision-making
 - Greater accessibility and participation for education and livelong learning

Further digital transformation focuses on emerging topics

- Strengthen impact of metrology in next, most transformative phase of digitalization
 - Conceptual consistency and interoperability in digital metrological framework, including standardized data exchange formats and full automation of services,
 - ▶ Develop metrology for quality and safety of artificial intelligence in a metrological context, fostering the role of metrology in the next generation of digitalization,
 - ► Facilitate the advancement of **digital metrology for complex systems**, including the reliable integration and quality assurance of **large-scale sensor networks**

Commitment of community: an invitation to participate

- NMIs and RMOs and other stakeholders may join forces to enter novel digital assets
- Organizations of digital quality infrastructure join collaborative venture
 - ▶ Digitalization of future transforms metrology, industry, and societes for better

