NIST Decision Tree for Consensus Building

Antonio Possolo (NIST Fellow, Chief Statistician)

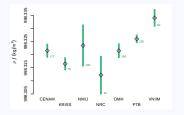
June 26-27, 2025 — CCM (20th Meeting) BIPM, Sèvres, France

NIST

1/13

Outline

- Bettin et al. (2013) CCM.D-K2
 Liquid density
- NIST Decision Tree
- Trujillo et al. (2025) CCM.V-K4

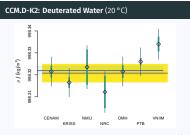

 Capillary viscometry
- · Sensitivity Analysis & Model Selection

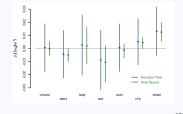
2/13

References

- Koepke, Lafarge, Possolo, Toman (2017) Consensus building for interlaboratory studies, key comparisons, and meta-analysis poi 10.1088/1681-7575/aa6c0e
- Possolo, Koepke, Newton, Winchester (2021) Decision Tree for Key Comparisons Doi 10.6028/jres.126.007

CCM.D-K2: Deuterated Water (20 °C)


NIST Decision Tree


https://decisiontree.nist.gov

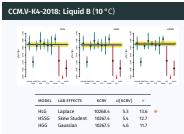
 \sim Live Demonstration \sim

6/13

CCM.D-K2: Deuterated Water (20 °C)

Interpreting Data Reduction Choices

- Every data reduction is loaded with assumptions that often remain unstated and untested
 - Relation between measured values and measurand
 - Pattern and typical size of dispersion of measured values
 - Kinds and typical sizes of lab-specific measurement errors


9/13

Overdispersion: Dark Uncertainty

Standard Deviation of	
Measured Values	0.0069kg/m^3
Geometric Average of Reported Standard Uncertainties	0.0031 kg/m ³
Excess Dispersion (Naive Evaluation) $\sqrt{0.0069^2 - 0.0031^2}$ kg/m ³	0.0062 kg/m ³

- Dark Uncertainty is the excess dispersion of the measured values above and beyond what the reported uncertainties suggest that the measured values should show
- NIST Decision Tree propagates dark uncertainty to KCRV and (optionally) to the DoEs

10/13

Listening to the Data - Respectfully

- Measurement results can tell us how they should be modeled and reduced
 - Selecting a data reduction procedure before examining the measurement results is like buying a pair of shoes without first trying them on for fit

Listening to the Data — Consequentially

- Computation of KCRV and DoEs should be consistent with a statistical measurement model that is scientifically credible and adequate for the actual measurement results
- Model selection should include analysis of sensitivity to modeling assumptions
- Formal model selection criteria (like AIC, BIC, or LOOIC) can also be of assistance

13/13