

First realization of a fully-primary optical pressure scale with two-color measurement

Yuanchao Yang (presenter), NIM, China

In collaboration with

Patrick F. Egan and Jack A. Stone, NIST, USA

2025-6-26

Y. Yang, J.A. Stone, P.F. Egan^{*}, Demonstration of dispersion gas barometry, Physical Review Applied, 23, 064041 (2025).

Traditional pressure standards

$1 Pa = 1 kg m^{-1} s^{-2}$ Pa kg ઈ m lom $p = m \cdot g \cdot A^{-1}$

2015 at NIST

State of the art pressure balance with **100 kg** weights $P = \rho \cdot g \cdot h$

Courtesy of NIST website

NIST **3-meter-tall** manometer with **500 lb** mercury

Pressure: force per unit area

Optical pressure standard

SI brochure 9th ed.: A user is now free to choose any convenient equation of physics that links the defining constants to the quantity intended to be measured.

Pressure: thermal energy per unit volume

h

C

e

4

How to realize an optical pressure standard

The core part is a Fabry-Perot cavity: a pair of HR coating mirrors separated with a fixed length.

How to realize an optical pressure standard

The core part is a Fabry-Perot cavity: a pair of HR coating mirrors separated with a fixed length.

But the cavity length changes under pressure 11 CCM

$$n-1 = \frac{\Delta f}{\nu} + n\kappa p$$
 $\kappa \approx 10^{-11} \, \mathrm{Pa}^{-1}$ for ULE

- Targeting pressure uncertainty of 10^{-6} , κ should be known within 10^{-4} , i.e. 10^{-15} /Pa.
- Elastic property of ULE glass is not well known. FEA has large uncertainty.
- A dual cavity has been adopted by NIST and NIM. Effective *k* reduces to 10⁻¹² Pa⁻¹, still high.
- Determination of κ relied on traditional pressure standards. Not primary.

$$p\frac{3A_{\rm R}}{2RT} = n - 1 = \frac{\Delta f}{\nu} + n\kappa p$$

Two gas method

Helium
$$p \frac{3A_{\rm R}({\rm He})}{2RT} = \left(\frac{\Delta f}{\nu}\right)_{\rm He} + n_{\rm He}\kappa p$$

gas: N₂ or Ar

$$p \frac{3A_{\rm R}({\rm gas})}{2RT} = \left(\frac{\Delta f}{\nu}\right)_{\rm gas} + n_{\rm gas}\kappa p$$

Two equations for two unknowns

 $A_{\rm R}({\rm N}_2)$ or $A_{\rm R}({\rm Ar})$ is about 8 times of $A_{\rm R}({\rm He})$.

Other gas properties

Most accurate results

Two gas method is semi-primary!

gas	A _R /(cm³mol)	u _r	traceability	reference
nitrogen	4.446139 (633nm, 303 K)	3.6 ppm	NIST UIM	Egan et al., Opt Lett, 40 (2015) 3945-3948.
nitrogen	4.446175 (633nm, 303 K)	3.1 ppm	NIST PG	Egan and Yang, Int. J. Thermophys., 44 (2023) 181.
nitrogen	4.396718 (1542nm, 303 K)	3.1 ppm	NIST PG	Egan and Yang, Int. J. Thermophys., 45 (2024) 120.
argon	4.195735 (633 nm)	3.1 ppm	NIST PG	Egan and Yang, Int. J. Thermophys., 44 (2023) 181.
argon	4.149749 (1542nm)	3.1 ppm	NIST PG	Egan and Yang, Int. J. Thermophys., 45 (2024) 120.
argon	$\begin{array}{l} A_{\varepsilon} + A_{\mu} \\ + A_2 \nu^2 + \cdots \end{array}$	10 ppm	A_{ε} : PTB PG A_{μ} , A_2 : theory	Gaiser and Fellmuth, PRL 120, 123203, 2018. Lesiuk et al., PRA, 107 (2023) 042805.

Two color method

Helium, 633nm
$$p \frac{3A_{R}^{He}(633)}{2RT} = \left(\frac{\Delta f}{\nu}\right)_{633} + n_{He}\kappa p$$

fully-primary!
Helium, 1542nm $p \frac{3A_{R}^{He}(1542)}{2RT} = \left(\frac{\Delta f}{\nu}\right)_{1542} + n_{He}\kappa p$

Two equations for two unknowns

But $A_{R}^{He}(633)$ and $A_{R}^{He}(1542)$ only differs by 0.5%! Separate measurement like the two gas method doesn't work.

Two color method – correlated measurement Two laser beams sense the same pressure, temperature, and cavity length simultaneously. 90 Mirrors are dual-coated $\overline{}$ at 633 nm and 1542 nm. ecdl HeNe

Two color method – correlated measurement

Noise of synchronous frequency

Synchronous frequency doesn't drift

Uncertainty analysis

$$p_{\rm ops} = \frac{2RT}{3A_2(\overline{\nu}_{\rm blue}^2 - \overline{\nu}_{\rm red}^2)} \left[\left(\frac{\Delta f}{\nu} \right)_{\rm red} - \left(\frac{\Delta f}{\nu} \right)_{\rm blue} \right]$$

$$p_{\rm ops} = \frac{\left(\frac{\Delta f}{\nu} \right)_{\rm red} - \left(\frac{\Delta f}{\nu} \right)_{\rm blue}}{1.5 \times 10^{-12} \, \rm Pa^{-1}} = \frac{\Delta f_{\rm red} - \frac{\nu_{\rm red}}{\nu_{\rm blue}} \Delta f_{\rm blue}}{711} \, \rm Pa$$

100 Hz is equivalent to 0.14 Pa, i.e. 1.4 ppm @ 100 kPa

Uncertainty analysis

$$p_{\rm ops} = \frac{2RT}{3A_2(\overline{\nu}_{\rm blue}^2 - \overline{\nu}_{\rm red}^2)} \left[\left(\frac{\Delta f}{\nu} \right)_{\rm red} - \left(\frac{\Delta f}{\nu} \right)_{\rm blue} \right]$$

Retardation correction: 40 ppm

Puchalski et al., PRA 99, 041803, 2019

Uncertainty analysis

$$p_{ops} = \frac{2RT}{3A_2(\overline{v}_{blue}^2 - \overline{v}_{red}^2)} \left[\left(\frac{\Delta f}{v} \right)_{red} - \left(\frac{\Delta f}{v} \right)_{blue} \right]$$

$$\begin{array}{c} 0.3 \text{ mK} \\ \text{O.3 mK} \\ \text{O.3 mK} \\ \text{Calibration of cSPRT against ITS-90} \\ \text{Temperature gradient} \end{array} \right] \quad \int_{u=1}^{u=1}^{u=1} \int_{u=1}^{u=1} \int_{u=1}^{u$$

Helium impurity

Fully-primary optical pressure scale

component	$u_{\rm r}(p_{\rm ops}) \ /10^{-6}$	$u_{\rm r}(\kappa) \ /10^{-4}$
He theory $A_{\rm R}(\nu), B_{\rho}, \ldots$	4.0	< 0.1
temperature T	2.5	< 0.1
pressure p		1.0
frequency $\Delta f / \Delta \nu_{\rm fsr}$	0.2	< 0.1
diffusion β	0.6	0.2
impurity	0.7	0.2
statistical	3.0	1.7
combined $k = 1$	5.7	2.0

Comparison with NIST 2 ppm piston gauge: 2.2 ppm \pm 5.7 ppm

Neon, Argon, and nitrogen

Using κ determined from helium measurement, and p from piston gauge calibrated by the optical pressure scale.

633nm
$$p \frac{3(A_{\varepsilon} + A_{\mu} + A_{2}\bar{\nu}_{633}^{2} + A_{4}\bar{\nu}_{633}^{4} + \cdots)}{2RT} = \left(\frac{\Delta f}{\nu}\right)_{633} + n_{gas}\kappa p$$

1542nm
$$p \frac{3(A_{\varepsilon} + A_{\mu} + A_{2}\bar{\nu}_{1542}^{2} + A_{4}\bar{\nu}_{1542}^{4} + \cdots)}{2RT} = \left(\frac{\Delta f}{\nu}\right)_{1542} + n_{gas}\kappa p$$

Two equations for two unknowns

Neon

Theo. [1]: Lesiuk et al., PRA 102, 052816 (2020).

Exp. [2]: Gaiser and Fellmuth, PRL 120, 123203 (2018).

Argon

Exp. [2]: Gaiser and Fellmuth, PRL 120, 123203 (2018).

Nitrogen

Exp. [2]: Schmidt and Moldover, Int. J. Thermophys. 24, 375 (2003).

Argon and nitrogen: trend in A₂(p)

Argon and nitrogen: trend in A₂(p)

$$n-1 = p\frac{3A_{\rm R}}{2RT} + p^2 \frac{3}{8(RT)^2} (A_{\rm R}^2 - 4A_{\rm R}B_{\rho} + 4B_{\rm R}) + o(p^3)$$

$$\boldsymbol{B}_{\mathrm{R}}(\boldsymbol{\nu}) = \boldsymbol{B}_{\varepsilon} + \boldsymbol{B}_{\mathrm{R}}^{(2)} \overline{\boldsymbol{\nu}}^{2}$$

Argon: adjusted $B_{\rm R}^{(2)}$ for no trend in $A_2(p)$

<i>T</i> /(K)	B _ε	$\boldsymbol{U}(\boldsymbol{B}_{\boldsymbol{\varepsilon}})$	$B_{\mathrm{R}}^{(2)}$	<i>В</i> _R 633 nm	<i>В</i> _R 1542 nm	Ref.
300	1.71	0.11	4.79	1.73	1.71	Theor.
300	1.71	0.11	8.76	1.75	1.71	This work

Unit: cm⁶/mol²

Theor. : Garberoglio and Harvey, J. Res. Natl. Inst. Stand. Technol. 125, 125022 (2020).

Practical optical pressure scale using argon

Using A_{ε} , A_{2} , and $B_{\rm R}^{(2)}$ obtained in this work, solving p and κ from the two-color equations.

††| CCM

Practical optical pressure scale using argon

Using κ determined at high pressures, then apply single wavelength calculations.

Statistic uncertainty below 1 ppm!

H CCM

- First realization of a fully-primary optical pressure scale based on the dispersion property of helium.
- Most accurate dispersion data for neon, argon, and nitrogen.
- Pressure trend in $A_2(p)$ with current literature data of $B_R^{(2)}$.
- Practical optical pressure scale using argon can achieve statistic uncertainty below 1 ppm.

Thank you!

