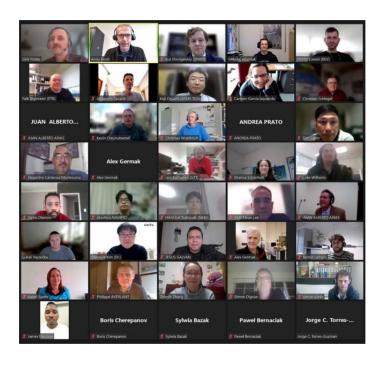


Report of the CCM Working Group on Force and Torque

Andy Knott

20th CCM meeting, 26-27 June 2025

WG Meetings


Past CCM-WGFT meetings

- 6-7 February 2024
- 18-19 February 2025

Future CCM-WGFT meetings

February/March 2026

All virtual, via Zoom

Main actions and achievements

Ongoing organisation of KCs and publication of results

Preparation and publication of guidance on CMC submission and review

2024-04-11 Version 1.1

Guidelines for Submission and Review of Calibration and Measurement Capabilities (CMCs)

Consultative Committee for Mass and Related Quantities (CCM)
Working Group on Force and Torque (CCM-WGFT)

Table 1: Force difficulty levels

Force traceability method	Force range	Difficulty level 1	Difficulty level 2	Difficulty level 3
Doodweight	<i>F</i> ≥ 1 N	$W_{\rm CMC} \le W_1 = 0.005 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.05 \%$
Deadweight	F < 1 N	$W_{\rm CMC} \le W_1 = 0.01 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.1 \%$
Hydraulic or lever amplification	all	$W_{\rm CMC} \le W_1 = 0.01 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.1 \%$
Single reference	F ≥ 10 N	$W_{\rm CMC} \le W_1 = 0.02 \%$	$W_1 < W_{\text{CMC}} \le W_3$	$W_{\rm CMC} > W_3 = 0.2 \%$
transducer	F < 10 N	$W_{\rm CMC} \le W_1 = 0.05 \%$	$W_1 < W_{\rm CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.5 \%$
Multiple reference transducers / build-up system	all	$W_{\rm CMC} \le W_1 = 0.02 \%$	$W_1 < W_{\text{CMC}} \le W_3$	$W_{\rm CMC} > W_3 = 0.2 \%$

Table 2: Torque difficulty levels

Torque traceability method	Torque range	Difficulty level 1	Difficulty level 2	Difficulty level 3				
Deadweight +	<i>T</i> ≥ 1 N·m	$W_{\rm CMC} \le W_1 = 0.005 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.05 \%$				
lever(s)	T < 1 N·m	$W_{\rm CMC} \le W_1 = 0.01 \%$	$W_1 < W_{\rm CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.1 \%$				
Jockey weights + lever	all	$W_{\rm CMC} \le W_1 = 0.02 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.2 \%$				
Load cell(s) + lever(s)	all	$W_{\rm CMC} \le W_1 = 0.02 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.2 \%$				
Reference	<i>T</i> ≥ 10 N·m	$W_{\rm CMC} \le W_1 = 0.02 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.2 \%$				
transducer	T < 10 N·m	$W_{\rm CMC} \le W_1 = 0.05 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.5 \%$				
Reference torque wrench*	all	$W_{\rm CMC} \le W_1 = 0.02 \%$	$W_1 < W_{CMC} \le W_3$	$W_{\rm CMC} > W_3 = 0.2 \%$				
*used to calibrate torque wrench calibration equipment								

Table 3: Technical evidence points values

Technical evidence	Points					
CMC consistent with information from:	Polits					
Fully-documented uncertainty budget						
Results of key or supplementary comparison						
Onsite peer assessment reports						
Publicly-available information on technical activities						
Active participation in RMO projects						
Other evidence of knowledge and experience	2					

Table 4: Required points for difficulty levels

Difficulty level	Required points
1	36
2	31
3	28

4	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
	CIPM MRA	Appendix (C: Calibrati	on and Me	asuremen	t Capability	(CMC) De	clarations						
3	Calibration	or Measureme	ent Service	Measu	urand Level or	Range	Measurement Conditions/Independent Variable		Expanded Uncertainty					
	Quantity/ Class	Instrument or Artifact	Instrument Type or Method	Minimum value	Maximum value	<u>Units</u>	Parameter	Specifications	<u>Value</u>	<u>Units</u>	Coverage Factor	Level of Confidence	ls the expanded uncertainty a relative	Evidence check
4		FORCE											one?	
6	Force - tension and compression	Force measuring device		1	100	kN	Force application mode	incremental only	0.002	%	2	95%	Yes	CMC-F1
7	Force - compression only	Force measuring device		100	1000	kN			0.00005 F + 100 N;F in N	N	2	95%	No	CMC-F2
8											2	95%	Yes	CMC-F3
9											2	95%	Yes	CMC-F4
10											2	95%	Yes	CMC-F5
11		TORQUE									2	95%	V	
12											2	95%	Yes	CMC-T1
13											2	95%	Yes	CMC-T2

Back to CMC CMC metadata Quantity	CMC-F1	CMC-F2	CMC-F3	CMC-F4	CMC-F5	CMC-T1
Quantity	roice	Force	roice	roice	roice	Torque
Traceability	Deadweight	Hydraulic amplification				
Minimum force in N / Minimum torque in N m	1000 N	100000 N				
Minimum expanded ($k = 2$) uncertainty	0.002%	0.015%				
Difficulty level	1	2				
Required points	36	31				
Total points	37	32	0	0	0	0
Technical evidence Poin	ts Supplied	Supplied	Supplied	Supplied	Supplied	Supplied
Fully-documented uncertainty budget 16	Yes	Yes	No	No	No	No
Results of key or supplementary comparison 12	Yes	Yes	No	No	No	No
Onsite peer assessment reports 6	Yes	No	No	No	No	No
Publicly-available information on technical activities 4	No	Yes	No	No	No	No
Active participation in RMO projects 3	Yes	No	No	No	No	No
Other evidence of knowledge and experience 2	No	No	No	No	No	No

Progressing the state of the art

Methods for continuous and dynamic force calibration

Development and optimisation of technology including digitalisation

Digital SI and Digital Calibration Certificates (DCCs) in force and torque

Methods for realisation of low-range force and torque with direct traceability to fundamental constants

Traceability for time-dependent forces in different frequency ranges

Traceable machines for continuous and dynamic measurements for testing in industry and research

EMPIR 18SIB08 ComTraForce:

https://www.ptb.de/empir2018/comtraforce/home/

Progressing the state of the art - torque

Torque measurement under rotation and dynamic torque

Traceability for large torque in the MN·m range

Traceable methods for mechanical power measurements and efficiency determination

More interdisciplinary new topics for example in the field of renewable energy

EMPIR 19ENG08 WindEFCY:

https://www.ptb.de/empir2020/windefcy/home/

Liaison & stakeholders

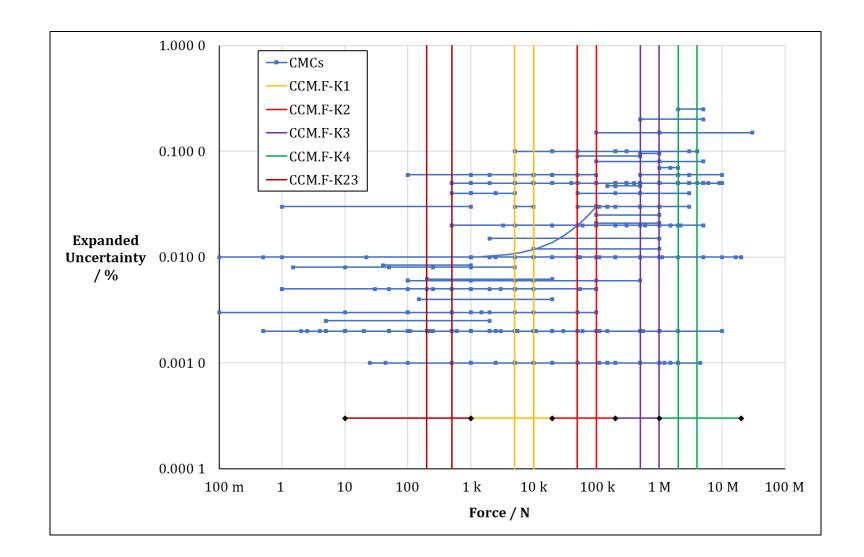
IMEKO TC3 – Measurement of force, mass, torque, and gravity

ISO/TC 164 – Mechanical testing of metals
ISO/TC 164/SC 1 - Uniaxial testing
ISO/TC 164/SC 1/SG 1 - Continuous force traceability (ISO 376 and ISO 7500-1)
ISO/TC 164/SC 4 - Fatigue, fracture and toughness testing

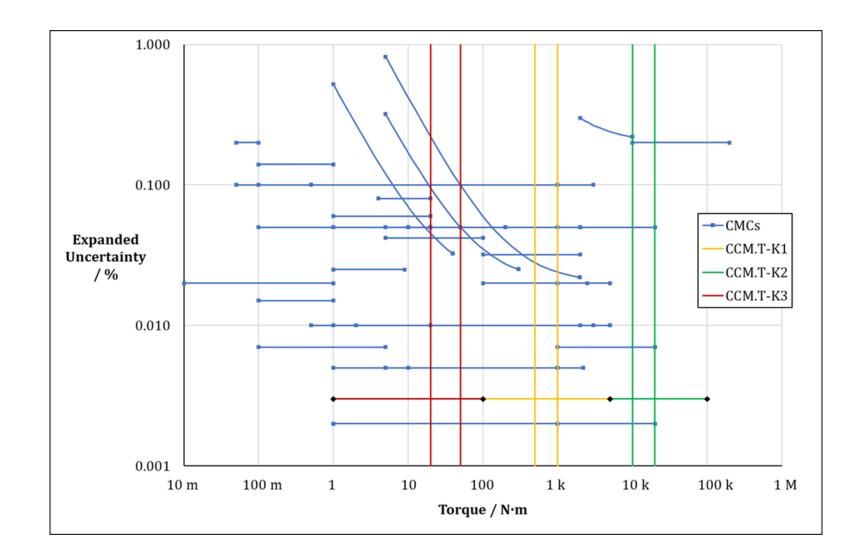
Industry

Manufacturers of force and torque measuring devices

Manufacturers of testing machines and test benches


Calibration and testing laboratories in force and torque

Automotive, aerospace, materials, offshore, renewable energy industries


Automation technology

Medical measuring techniques

Completed KC

- F-K23 (200 N, 500 N) Pilot METAS
 Ongoing KC
- F-K1.a.2022 (5 kN, 10 kN) Pilot UME
 Planned KCs
- F-K4 (2 MN, 4 MN) Pilot NIST
- T-K1 (500 N·m, 1 kN·m) Pilot CEM
- T-K3 (20 N·m, 50 N·m) − Pilot PTB

ID	Points	Range	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
CCM.F-K23	200 N, 500 N	10 N – 1 kN			X								
CCM.F-K1	5 kN, 10 kN	1 kN – 20 kN		X									
CCM.F-K2	50 kN, 100 kN	20 kN – 200 kN								X			
CCM.F-K3	500 kN, 1 MN	200 kN - 1 MN											X
CCM.F-K4	2 MN, 4 MN	1 MN – 20 MN							Χ				
CCM.T-K3	20 N·m, 50 N·m	1 N·m – 100 N·m								Χ			
CCM.T-K1	500 N·m, 1 kN·m	100 N·m – 5 kN·m							Χ				
CCM.T-K2	10 kN·m, 20 kN·m	5 kN·m – 100 kN·m										X	

Programme of work for the next 2 years

Complete ongoing KC

- F-K1.a.2022 (5 kN, 10 kN) Pilot UME Initiate planned KCs
- F-K4 (2 MN, 4 MN) Pilot NIST
- T-K1 (500 N·m, 1 kN·m) Pilot CEM
- T-K3 (20 N·m, 50 N·m) Pilot PTB

Consider new KC at lower forces: 1 N to 20 N range

- 14 NMIs have expressed interest, 0.002 % $< U_{\rm CMC} < 0.01$ %
- Issues with transfer standards, willingness to pilot

Proposals (KCs, chairmanship, membership...)

No specific proposals

