

Least-squares analysis for optimal determination of frequency ratios

Helen Margolis

CCTF Technical Exchange on Options for Redefinition of the Second (28th April 2025)

Roadmap for redefinition of the second

†**||CCTF**|

N. Dimarcq et al, Metrologia 61, 012001 (2024)

Mandatory criteria Achieved

gress

<u>pro</u>

Must be achieved before changing the definition

Ancillary conditions

Status should be advanced, even if not completely achieved at the time of redefinition - Validation that optical frequency standards (OFS) are at a level 100 times better than Cs

- Continuity with the definition based on Cs

Requires comparisons between optical clocks developed independently in different laboratories around the world

ITOC collaboration Riedel *et al,* Metrologia 57, 045005 (2020)

BACON collaboration Nature 591, 564 (2021)

ICON collaboration (2023)

Recommended values of standard frequencies

Values are periodically updated and published at https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies

For applications including

- Practical realisation of the definition of the metre
- Secondary representations of the definition of the second (SRS)

Approved by the CCTF or CCL, based on recommendations put forward by the CCL-CCTF Frequency Standards Working Group (WGFS)

Secondary frequency standards contribute to TAI using the recommended frequency value and uncertainty of the SRS on which they are based

Clock comparisons result in an over-determined dataset **NPL**

For $N_{\rm S}$ different reference transitions with frequencies v_k ($k = 1, 2, ..., N_{\rm S}$),

- $N_{\rm S}(N_{\rm S}-1)/2$ different frequency ratios can be measured
- Only $N_{\rm S}$ 1 of these are independent

In practice not all frequency ratios are measured

NPL©

Analysis of over-determined data sets

A new approach was needed for analysing over-determined sets of clock comparison data

- a) To check the level of internal self-consistency
- b) To derive optimal values for the ratios between their operating frequencies

H. S. Margolis and P. Gill, Metrologia 52, 628 (2015)

Use a least-squares adjustment procedure, based on the approach used by CODATA to provide a self-consistent set of recommended values of the fundamental physical constants

P. J. Mohr & B. N. Taylor, Rev. Mod. Phys. 72, 351 – 495 (2000)

All data stored as **frequency ratios**

(optical frequency ratios, microwave frequency ratios or optical-microwave frequency ratios)

Correlations between measured quantities can be included (where known)

Least-squares analysis procedure

Updates to the recommended frequency values

- Least-squares analysis used for the first time
- Only one algorithm / software available

- 3 independent calculations using 2 different algorithms
- Correlations neglected

- Correlations taken into account
- Optical frequency ratios provided as an appendix to the list
- Modified approach to assessment of input data, to ensure internal self-consistency of the output data set

2021 update

Analysis performed by a sub-group of the CCL-CCTF Frequency Standards Working Group (WGFS)

+ input from Marco Pizzocaro

Sebastien Bize (LNE-SYRTE), Gianna Panfilo (BIPM), Tetsuya Ido (NICT), Gérard Petit (BIPM), Helen Margolis (NPL), Chris Oates (NIST)

> "The CIPM list `Recommended values of standard frequencies': 2021 update" H. S. Margolis, G. Panfilo, G. Petit, C. Oates, T. Ido and S. Bize, Metrologia 61, 036005 (2024)

3 independent calculations using 2 different algorithms

Numerical calculations must be performed to sufficiently high precision (> 18 significant figures) Achieved using routines designed for high precision floating point arithmetic

Implementation A v Implementation B

Differ by no more than 1 in the least-significant (24) digit of the computation Uncertainties identical to 4 significant figures

Algorithm 1 v Algorithm 2

Frequency ratio values differ by ≤ 2 parts in 10^{21} Uncertainties differed by ≤ 2 in the least significant digit of the 4 computed

Output correlation coefficients agreed to better than 1 part in 10⁵

Importance of correlations

- Neglecting correlations can lead to biased frequency values and underestimated uncertainties
- Correlations can arise from both statistical and systematic uncertainties
- Consider
 - a) Correlations between clocks based on the same atomic species
 - E.g. due to common theoretical or experimental values of atomic coefficients
 - b) Correlations between different clocks in the same institution
 - E.g. due to common relativistic redshift correction
 - c) Correlations arising from **common data**
 - Several ratio measurements involving the same clock, performed at the same time
 - Absolute frequency measurements performed using TAI as a reference, even if several months apart
- H. S. Margolis and M. Pizzocaro,

Guidelines on the evaluation and reporting of correlation coefficients between frequency ratio measurements (2020) http://empir.npl.co.uk/rocit/project-outputs/

Input data for the 2021 least-squares adjustment

- 105 measurements
 (33 frequency ratios, 72 absolute frequencies)
- 483 correlation coefficients computed
 - Mostly due to use of the same primary or secondary frequency standard to access the SI second

NPLO

- 86 computed on an ad-hoc basis (common data, common coefficients...)
- Some modifications to input data compared to published results:
 - 2 data points had their uncertainty increased slightly to avoid unphysical correlation coefficients
 - 2 outliers (already present in 2017) had their uncertainty increased
 - 5 data points had their uncertainty increased due to scarcity of data in measurements that strongly influence the recommended values

2021 recommended frequency values

- 6 secondary representations of the second now have uncertainties $\leq 2 \times 10^{-16}$
- Optical clocks can contribute to TAI with a similar weight to Cs primary frequency standards, if they achieve similar uptimes

Complete set of frequency ratios also provided

Consistent with the 2021 recommended frequency values, taking into account correlations between those values

Clock transitions	Atomic species	Frequency ratio	Fractional uncertainty
ν_1 / ν_3	¹¹⁵ In ⁺ / ¹⁹⁹ Hg	1.123 010 988 476 8743(49)	4.3×10^{-15}
ν_1/ν_4	¹¹⁵ In ⁺ / ²⁷ Al ⁺	1.130 584 343 961 8487(49)	4.3×10^{-15}
ν_1 / ν_5	¹¹⁵ In ⁺ / ¹⁹⁹ Hg ⁺	1.190 360 410 756 6604(51)	4.3×10^{-15}
1/16	115In+/171Yb+(E2)	1.841 194 044 091 2659(80)	4.3×10^{-15}
1/17	¹¹⁵ In ⁺ / ¹⁷¹ Yb ⁺ (E3)	1.973 773 591 557 2195(85)	4.3×10^{-15}
ν_1/ν_8	¹¹⁵ In ⁺ / ¹⁷¹ Yb	2.445 326 324 126 955(11)	4.3×10^{-15}
ν_1/ν_{10}	¹¹⁵ In ⁺ / ⁸⁸ Sr ⁺	2.849 510 267 459 795(13)	4.5×10^{-15}
ν_1/ν_{11}	¹¹⁵ In ⁺ / ⁸⁸ Sr	2.952748322069815(13)	4.3×10^{-15}
V1/V12	¹¹⁵ In ⁺ / ⁸⁷ Sr	2.952748749874866(13)	4.3×10^{-15}
ν_1/ν_{13}	¹¹⁵ In ⁺ / ⁴⁰ Ca ⁺	3.083 388 200 597 554(14)	4.7×10^{-15}
1/14	115 In+/87 Rb	185 436 914 199 787 30(80)	4.3×10^{-15}
ν_3/ν_4	199Hg/27AI+	1.006 743 794 640 198 49(15)	1.5×10^{-16}
ν_3/ν_4	¹⁹⁹ Hg/ ¹⁹⁹ Hg ⁺	1.059 972 184 574 196 57(19)	1.8×10^{-16}
	¹⁹⁹ Hg/ ¹⁷¹ Yb ⁺ (E2)	1.639 515 608 470 095 42(28)	1.7×10^{-16}
13/V6	¹⁹⁹ Hg/ ¹⁷¹ Yb ⁺ (E3)	1.757 572 821 468 313 31(27)	1.5×10^{-16}
13/27	¹⁹⁹ Hg/ ¹⁷¹ Yb	2.177 473 194 134 564 88(32)	1.5×10^{-16} 1.5×10^{-16}
r_3/ν_8	¹⁹⁹ Hg/ ⁸⁸ Sr ⁺	2.17747319413456488(32) 2.5373841366633019(34)	1.5×10^{-15} 1.4×10^{-15}
V3/V10			1.4×10^{-16}
13/VII	¹⁹⁹ Hg / ⁸⁸ Sr	2.629 313 828 954 238 79(40)	1.5×10^{-16}
ν_3/ν_{12}	¹⁹⁹ Hg / ⁸⁷ Sr	2.629 314 209 898 909 56(39)	1.5×10^{-16}
ν_3/ν_{13}	¹⁹⁹ Hg/ ⁴⁰ Ca ⁺	2.745 643 838 071 0009(49)	1.8×10^{-15}
ν_3/ν_{14}	¹⁹⁹ Hg/ ⁸⁷ Rb	165 124.754 879 997 262(60)	3.6×10^{-16}
ν_4/ν_5	²⁷ AI ⁺ / ¹⁹⁹ Hg ⁺	1.052 871 833 148 990 45(11)	1.0×10^{-16}
ν_4 / ν_6	²⁷ AI ⁺ / ¹⁷¹ Yb ⁺ (E2)	1.628 533 115 573 902 39(14)	8.3×10^{-17}
V4/V7	²⁷ AI ⁺ / ¹⁷¹ Yb ⁺ (E3)	1.745 799 508 102 709 104(84)	4.8×10^{-17}
ν_4/ν_8	²⁷ Al ⁺ / ¹⁷¹ Yb	2.162 887 127 516 663 705(24)	1.1×10^{-17}
ν_4/ν_{10}	²⁷ AI ⁺ / ⁸⁸ Sr ⁺	2.520 387 163 220 7488(34)	1.3×10^{-15}
14/211	²⁷ Al ⁺ / ⁸⁸ Sr	2.611 701 053 388 596 03(10)	3.9×10^{-17}
1/1/12	²⁷ Al ⁺ / ⁸⁷ Sr	2.611 701 431 781 463 019(39)	1.5×10^{-17}
ν_4/ν_{13}	²⁷ Al ⁺ / ⁴⁰ Ca ⁺	2.727 251 811 919 3078(48)	1.8×10^{-15}
14/1/14	²⁷ AI ⁺ / ⁸⁷ Rb	164 018.646 808 755 766(54)	3.3×10^{-16}
ν_5/ν_6	¹⁹⁹ Hg ⁺ / ¹⁷¹ Yb ⁺ (E2)	1.54675342648610005(21)	1.3×10^{-16}
15/27	¹⁹⁹ Hg ⁺ / ¹⁷¹ Yb ⁺ (E3)	1.658 131 078 387 072 22(19)	1.1×10^{-16}
ν_{5}/ν_{8}	¹⁹⁹ Hg ⁺ / ¹⁷¹ Yb	2.054 273 900 601 723 59(22)	1.0×10^{-16}
ν_{5}/ν_{10}	¹⁹⁹ Hg ⁺ / ⁸⁸ Sr ⁺	2.393 821 435 684 7480(32)	1.3×10^{-15}
15/1/11	¹⁹⁹ Hg ⁺ / ⁸⁸ Sr	2.480 549 836 324 681 89(28)	1.1×10^{-16}
V5/V12	¹⁹⁹ Hg ⁺ / ⁸⁷ Sr	2.480 550 195 715 877 54(26)	1.1×10^{-16}
ν_5/ν_{13}	¹⁹⁹ Hg ⁺ / ⁴⁰ Ca ⁺	2.590 298 007 842 4970(46)	1.8×10^{-15}
15/1/14	¹⁹⁹ Hg ⁺ / ⁸⁷ Rb	155 782.158 516 102 797(54)	3.5×10^{-16}
16/27	¹⁷¹ Yb ⁺ (E2)/ ¹⁷¹ Yb ⁺ (E3)	1.072 007 373 634 205 473(73)	6.9×10^{-17}
V6/11/1	171 Yb+(E2)/171 Yb	1.328 119 831 787 671 42(11)	8.3×10^{-17}
ν_6/ν_{10}	171Yb+(E2)/88Sr+	1.547 642 561 958 3136(21)	1.3×10^{-15}
ν_6/ν_{11}	171 Yb+(E2)/88 Sr	1.60371381362313952(14)	8.9×10^{-17}
V6/V12	¹⁷¹ Yb ⁺ (E2)/ ⁸⁷ Sr	1.60371404597510300(13)	8.2×10^{-17}
V6/V13	171Yb+(E2)/40Ca+	1.674 667 703 001 0606(30)	1.8×10^{-15}
16/214	¹⁷¹ Yb ⁺ (E2)/ ⁸⁷ Rb	100715,573567538329(34)	3.4×10^{-16}
$\frac{1}{\nu_{\rm N}} / \nu_{\rm R}$	¹⁷¹ Yb ⁺ (E3)/ ¹⁷¹ Yb	1.238 909 231 832 259 428(59)	4.7×10^{-17}
ν_7/ν_{10}	¹⁷¹ Yb ⁺ (E3)/ ⁸⁸ Sr ⁺	1.443 686 489 498 3514(19)	1.3×10^{-15}
$\frac{1}{2} \frac{1}{\nu_{11}}$	¹⁷¹ Yb ⁺ (E3)/ ⁸⁸ Sr	1.495 991 401 800 156 824(86)	5.8×10^{-17}
	¹⁷¹ Yb ⁺ (E3)/ ⁸⁷ Sr	1.495 991 401 800 136 824(86)	4.6×10^{-17}
ν_{1}/ν_{12}	¹⁷¹ Yb ⁺ (E3)/ ⁴⁰ Ca ⁺	1.562 179 276 177 7189(28)	4.6×10 1.8×10^{-15}
ν ⁷ /ν ₁₃	¹⁷¹ Yb ⁺ (E3)/ ⁸⁷ Rb	93 950.448 518 001 415(31)	3.3×10^{-16}
ν_7/ν_{14}	¹⁷¹ Yb/ ⁸⁸ Sr ⁺		
ν_8/ν_{10}		1.165 288 345 913 1553(16)	1.3×10^{-15}
ν_8/ν_{11}	¹⁷¹ Yb/ ⁸⁸ Sr	1.207 506 864 395 296 327(46)	3.8×10^{-17}
ν_{8}/ν_{12}	¹⁷¹ Yb/ ⁸⁷ Sr	1.207 507 039 343 337 845(16)	1.3×10^{-17}

Clock transitions	Atomic species	Frequency ratio	Fractional uncertaint
ν_8/ν_{13}	171 Yb/40Ca+	1.260 931 177 231 8993(22)	1.8×10^{-15}
ν_8/ν_{14}	171 Yb/87 Rb	75 833.197 545 114 200(25)	3.3×10^{-16}
ν_{10}/ν_{11}	⁸⁸ Sr ⁺ / ⁸⁸ Sr	1.036 230 104 446 0007(14)	1.3×10^{-15}
ν_{10}/ν_{12}	88Sr+/87Sr	1.036 230 254 578 8345(14)	1.3×10^{-15}
ν_{10}/ν_{13}	⁸⁸ Sr ⁺ / ⁴⁰ Ca ⁺	1.082 076 536 381 8990(24)	2.2×10^{-15}
ν_{10}/ν_{14}	88Sr+/87Rb	65 076.766 459 625 929(88)	1.4×10^{-15}
ν_{11}/ν_{12}	⁸⁸ Sr/ ⁸⁷ Sr	1.000 000 144 883 682 799(36)	3.6×10^{-17}
ν_{11}/ν_{13}	⁸⁸ Sr/ ⁴⁰ Ca ⁺	1.044 243 485 823 4592(18)	1.8×10^{-15}
ν_{11}/ν_{14}	⁸⁸ Sr/ ⁸⁷ Rb	62 801.462 899 418 361(21)	3.3×10^{-16}
ν_{12}/ν_{13}	⁸⁷ Sr/ ⁴⁰ Ca ⁺	1.044 243 334 529 6392(18)	1.8×10^{-15}
ν_{12}/ν_{14}	87 Sr / 87 Rb	62 801.453 800 512 449(21)	3.3×10^{-16}
ν_{13}/ν_{14}	⁴⁰ Ca ⁺ / ⁸⁷ Rb	60 140.631 712 818 40(11)	1.8×10^{-15}

- Recommended frequency values are enough for contributions of secondary frequency standards to TAI
- Frequency ratios need to be considered when discussing options for redefinition of the second

(Continued.)

Options for redefinition of the second

Option 1

- Choose a single optical transition to replace the Cs hyperfine transition
- Fix the numerical value of the frequency of this transition: v_{Xy} = N Hz, where N is the defining value

Option 2

- Create a defining constant based on several transitions rather than just a single one
- Quantity whose numerical value is used in the definition is a weighted geometric mean of the frequency of an ensemble of chosen transitions

• Unit of time set by the relation $\prod_{i} v_i^{w_i} = N Hz$, where w_i and N are the defining values, and $\sum w_i = 1$

Option 2a

Fixed values of w_i and N

Option 2b

Dynamic defining values w_i and N periodically updated by the CIPM, following predefined rules adopted by the CGPM

But whichever option is selected

•

One or more of the frequency ratios from a least-squares adjustment will be used to set the defining constant or constants appearing in the new definition

The frequency ratios from the least-squares adjustment will play a key role in the *Mise en pratique* for the new definition

More scrutiny is needed on the evolution of the frequency ratio values to ensure the stability of the new definition and realisation of the second

helen.margolis@npl.co.uk