
Rapport BI P M-76/16 

Some remarks on dead-time losses of coincidences 

by JéSrg W. Müller 

Bureau International des Poids et Mesures, F-92310 Sèvres 

1. 1 ntroduc tion 

Dead-time effects for coincident pulses are known to be a very 
difficult subject. Apart from some trivial cases, no rigorous results are 
yet known. For ail practical applications, approximate solutions are used, 
the quality of which is difficult to judge. Whereas in general they seem 
to be sufficiently reliable, their deficiency begins to show up clearly 
for very high count rates. 

Unfortunately, the present small note will not really improve this situation. 
It may, however, provide some guideline for the credibility of the various 
approaches which have been suggested. 

2. Basis of the mode 1 

To fix the notation, the situation is sketched in Fig. 1, where 
the pulse series with the count rates Bl and Gl are Poisson distributed 
and the dead times T ~ and 'Ly are supposed to be of the non-extended 
type. Our aim is to evaluate the c~,Ur:)},rate Ç2 for the surviving true 
coincidences. This is equivalent to the determination of the corresponding 
transmission factor Tc,=C2/Cl, whenthe rates Cl, bl and gl of 
the original process as weil as the dead times are given. However, only 
à very sp~cial case (namely for bl = gl and 'L ~ = 'Ly) will be amenable 
to a so 1 u fi 0 n • 
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Figure 1 - Schematic arrangement and notation (see text) 
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Let us first consider the beta channel. Since losses are produced by 
the dead times of registered pulses, the probability for an original B1-event 
to be suppressed is given by the chance that any B2 -event occurs 
in an interval of length rc~ preceding the B1-event. Let t = 0 be given 
by the arrivai of a registered B2-pulse (Fig. 2). If the interval density 
between B2 -events is described by fB(t), the total density is known to be 

00 
*k 

FB(t) = 2:~fB(t)~ , 
k=l 

and a well-known limit theorem assures that this tends asymptotically 
towards the corresponding count rate, i.e. 

As this is a general property of renewal processes, similar results also 
hold e.g. for pulses of the type G
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Fig.2 - Total arrivai density for a ~2.-:p'ulse J;n the vicinity of an 
original C 1-event at t. The origin ,t = 0 is determined 
by the arrivai of a (registered) B

2
-event. 

If the interval density fC(t) for the true coincidences C 2 were known, 
their rate could be determined (at least in principle) by forming the first 
moment 

00 

-1 J C
2 

= t • f C (t) dt • 

o 

However, fC(t) is unknown for the time being and may be supposed 
to be very complicated. On the other hand, equation (2) may now offer 
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a nove 1 possibil ity since 

provided we succeed in determining the asymptotic tota 1 density FC ; 
a knowledge of f C (t) would then not be needed. Let us therefore 
look at the requirements for a C

1
-event to escape suppression. 

The probability for a C
1
-event, located at t, to get lost in the beta 

channel is 

t 

P~(t) = f FB(x) dx • 

t-'ï~ 

Hence, its (local) survival probability becomes 

t - l F B (x) dx • 

t-1:~ 

For t ~ co this quantity goes over into the usual transmission factor 

where use has been made of (2). This maya Iso be written as 

a form. which is equivalent to the be.fter-kn~'Wn formula 
-1 . 

T ~ = (1 + B 1 '"C'~) , as is easily verified. 

We now try to write (51) as a product, where the first factor contains 
the effect due to the original Cl-pulses in the form 

Then 

where the conditional transmission factor is now given by 

(2 1
) 

(3) 

(4) 

(5) 

(51) 

(6) 

(7) 
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= l - (Cl +b 1) T~ 't~ 

l -Cl T~'C~ 

The gamma chdnnel is treated in a completely analogous way. 

To proceed further, we have to consider the very special case where 

and 

Then\we clearly have also 

a'nd 

(8) 

(9) 

This is most unfortunate as it brings us far away from the usual experimental 
situation, but for the moment we can see no way to avoid it. In this 
situation (with T ~ = T Y = T) we ha ve 

T = -T-' 
Cl 

where 
T = T = T = l - C T 17 • 
Cl ~ Cl Y Cl l 

The transmission factor Tc for the surviving true coincidence can now 
(and only now) be written in the form of a product and turns out to be 

hence 

where 

T = 
c 

1 
T = l + A "t = l - A2 'T • 

l 

An alternative, but equivalent form reads 

T c = T
2 

+ C 2 T 1: = T (T + C 2 1;) , 

where the 1I0bservabie ll rate C 2 is used as an independent variable, 
which may sometimes be preferable. 

(10a) 

(lOb) 

(11) 

( 12) 
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It is easy to check two limiting cases, namely that 

- for Cl ~ a T ~ T
2 

and 
c (13) 

Il 

al ~ a T ~ T 
c 

, 

as has to be expected. 

As mentioned before, our final formulae (11) or (12) are of little practical 
interest, because the assumption b

1 
= gl (or likewise B

1 
= G

1
), which 

would suppose equal counting efficiencies EA and E. , is too far from 
rea 1 ity. t-' Y 

Nevertheless, we think that the result is not quite superfluous ail the same, 
for use of it can be made at least in the following two ways 

- numerical checks by Monte Carlo shrtulcitiol1, 

- control whether the usual (approximate) formulae give the correct limiting 
values (13) or not. 

This will be done in the next two sections. 

3. Sorne Monte Ca rio simu lations 

If Tc is expressed in terms of the ratios xl = Cl/Al or x2 = C 2 /A2 ' 
we easi Iy find the re lations 

T 
T

2 
= 1 -x

1
(1-T) c 

and 

T 
2 

T (l-T) = T + x
2 

. 
'C 

." PI," ...... , 

The last form shows that for T constant, a plot of the transmission 
factor Tc for coincidences;.asa function of the ratio C2/A2 should give 
a straight line which starts (for x2 = 0) at T2 and ends (for x2 = 1) at T. 
This simple relation (Fig. 3) can be checked by Monte Carlo simulations. 

( 111) 

(12 1
) 

Such calculations have already been performed sorne years a~o. The 
results - for Al = 50 000, 100 000, 150 000 and 200 000 s- , always 
with "J; = 5 p.s - can be found in [lJ and they show excellent agreement 
with (11 1

). In the meantime these simulations have been extended to 
higher count rates (Al from 300 000 to 1 000 000 s-l) with T as low 
as 1/6. As can be seen from Figs. 4 and 5 (which are based on different 
simulations), the agreement with formula (11) is still very good. 
We therefore think that this relation (or likewise (12», in spite of 
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the perhaps somewhat heuristic way it was obtained, is a rigorous one. 
Unfortunately, several attempts to extend such a simple probabilistic 
approach to the more interesting situation where B

1 
'1 G

1 
have failed. 
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Figure 3 - Schematic graphical plot of Tc when xl = Cl/Al or 

x
2 

= C
2 

/A2 are used for the abscissa. The difference .6. 

for xl = 0.5 and x
2 

= 0.5, indicated in the figure can be 

readily shown to be (T/2}.(1-1)2/(1 +1). 

4. A comprehensive list of suggested theoretical formulae* 

ln what follows we want to compare sorne of the most widely used 
formulae for the 41t~-y coincidence method with respect to what they 
predict for the transmission Tc for true coinc}dences. For this purpose, 
the resolving time of the coincidenc'e~'C1rcuit will be assumed to be zero. 
ln order to simplify the comparison, background will be neglected and 
we suppose equal dead times in both channels. Furthermore, corrections 
due to the finite life-time of the source or to the decay scheme will not 
be taken into account. The notation used is the one introduced in Fig. 1. 
We first list sorne of the appropriate formulae. 

* This section is an abridged and simplified (by assuming '"C~ = '"r y) 

version of information communicated previously to A. Spernol 
(letter of February 10, 1971). For a representative collection of 
formulae now used at various laboratories, see [2J • 
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Figure 4 - Result of Monte Carlo simulations for the transmission factor 

Tc =C
2

/C
1 

asa functionof xl =C 1/A 1 , The dead times 

are always taken as 'T = 5 (J~s, Each experimental point is 

based on 5 000 registered C
2
-events (only 2 500 for 

Al = 1000 000 s-l), The full line IS the theoretical 

expectation according to (11 1
). 
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Figure 5 - Similar to Fig. 4, but for the abscissa x
2 

= C2/A2, for which theory predicts a straight line 

given by (12 1
). For Al = 500 000 s-l each point is based on la 000 Crevents (but 25 000 

for Al = 1 000 000 s-l). The approximate equldistance of the x
2 

values has been obtained 

by choosing for the input parameter Cl the values Al x2/[T + x
2 

(1 - T) J, with 

x
2 

= 0.1, 0.2, ••• , 1.0 • 

OJ 



9 

a)f~~~~~1~2~E~~~Y!~~~ 

ln the interpretation of Bryant ([3J, eq. (6) ), Campion's formula [4J 
can be written in the form 

C2 
C 1 = ~1 -(=B-

2 
--:-+--:-G=-2---::C=-2-r) -"'{; , 

from which we may deduce that 

T 
c 

1-(B
2

+G
2

)"r 
= 

Cl (l/C 1 - '"C ) 

With the usual abbreviations 

and 

for the transmission factors in the beta and gamma channels we finally 
obta in 

T 
c 

= 1 - (T ~ B 1 + T Y G 1) '"C 

l-C
1

"C 

(14) 

(15) 

Of the formula mentioned in a) there exist in fact several variants, 
but the differences only show up for different dead times (there is no 
well-defined "Campion formula"*). A particularly simple form has 
for instance been suggested in [5J, and essentially identical versions 
have been proposed for use in a number of international comparisons of 
activities. They ail reduce in our case to 

N 
o 

(16) 

for the source rate which is also given by No = B
1 

G
1
/C

1 
• 

* Equation (12) of [4J actually corresponds to the transmission factor 
Tc = 1 - (B 1 + G 1 - C 1)7:, where for instance T~ is taken as 1 - B1't , 

instead of (l + B
1 

'1;)-1. It is therefore only a first order correction and 

wHI not be discussed further in what follows. 
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Hence 

T 
c = T • T ' 

~ y 
or 

T
2 

• C 't - T + T T = 0 • 
c 1 c ~ y 

The solution for T is therefore 
c 

1 
T = 2 C '"{; (1 - - / 1 - 4 • TA T • Cl "C ) • 

c • l' V 1-' Y 
(17) 

Another formula occasionally used by participants in intercomparisons 
leads for our simplified conditions to 

B • G 
N = 2 2 (1 + C 1:) 

o C
2 

2 

For the transmission of the true coincidences, this can be readily 
shown to correspond to 

T = 
c 

(18) 

(19) 

A simplified formula for practical 
in [6J), from which it follows that 

use is given by Gandy (eq. (11-38) 

1 + (B 1 + G 2) 'C', ." ,,-­
Cl = C2 • 1 + C

2 
"{; 

This corresponds to a transmission factor 

T = 
c 1 + (B 1 + G 1 - Cl) 'r • 

e) f.~~~I~_o.i_G~~it..QD 

ln his original paper (eq. (18) of [7J) Gandy states a relation 
which goes up to third-order terms of the dead time. In our notation 
it reads 

(20) 

(21 ) 



l l 

T:
1 

= 1 + (B 1 + G 1 - C 1)17 + [Bl • G 1 - Cl (B 1 + G 1)/2J't
2 

2 3 
+ Cl (B l - G 1) '"C /3 • (22) 

f) f~~~~_0.!~!.Y2!!t_ 

Finally, we list the formula given by Bryant (eq. (4) in [3J)which is 

B2 • G 2 ~ . 2 C 2'ï; ] 

No = C
2 

L + 2 - (B
2 

+ G
2

}'1; • (23) 

From this we obtain for the transmission factor 

2 - (B
2 

+ G
2 

- 2 C
2

)'"t 

T c = T ~ T y' 2 - (B 2 + G 2) '"C • 

After some elementary -but tedious -algebra, an equivalent expression 
can alsobe found in terms of the original cou nt rates, namely 

2 - (TA B
1 

+ T G
1
)'1; 

= TT' 1"' Y 
~ Y 2 -(T ~ B 1 + T Y G 1 + 2 T ~ T Y Cl )'1; 

T 
c 

2 + (B 1 + G l )1: 

= TA T • 2 + (B + G - 2 C ) 'C • 
1"' Y 111 

(24) 

This enumeration does not pretend to be exhaustive; too many different 
formulae have been suggested in the last 20 years or so for the coincidence 
mèthod. Nevertheless we hope to have included those types which are 
most often applied by the users. 

:II ~ ,-" •• 

5. ~o~arison of the asymptotic behaviour of T 
c 

A possible way to decide whether a suggested formula for Tc is 
"in principle" acceptable or not consists in checking its behaviour for 
two extreme cases. For doing this in the simplest way, we choose the 
special case where Bl = G 1 = Al ' whence also T~ = T = T for 
equal dead times. y 

The limitingcaseswewishtoconsiderare Cl =0 and Cl =A 1 , respectively, 

for which 'Ife know the correct answers in advance, namely 

for and 
(25) 

T = T Il 

c 



8:;>'; 

12 

ln the first case the absence of common events in both channels guarantees_ 
their independence; in the second case, the processes are exactly identical 
in both channels so that the result is the same as for a single one. 
ln Table 1 we summarize the results of such a comparison for the six types 
of formula considered in the previous section. 

Table 1 - Some analytical forms of the transmission factor T for true coincidences, 
c 

assuming BI = G
l 

and equal dead times "y; (for 1'{;r = 0). 

T 
~ 

Formula T 
c for Cl = 0 

-------------------+~----------------------~----------~------------

Campion-Bryant 
( 15) 

III ntercompa riso n Il (1) 1 , 
(17) 

2C
l

't1 

III ntercompari so n Il (II) 
(19) 

Gandy (1) 
(21) 

Gandy (II) 
(22) 

Bryant 
(24) 

2 T - 1 
1 - C .'1:: 

1 

(1 - F- 4 T
2 

C 1 't' 

T
2 

- T
2 

C "C 
1 

T 
2-T(1+C

1
"C) 

T
2 

1 -TC
1
l; 

:11 
"l' ,.,,. '-"" 

T
2 

T-=-Tc 1 "C 

2 T - 1 T 

T
2 T

2 

r:T" 
f 

T
2 T

2 

- T + T
2 

T 
T 

2 - T 

T
2 

T 

T
2 

T 

It follows from a comparison of the limiting values in Table 1 with (25) 
that only Gandy's complete formula (i.e. including at least second-order 
terms) and Bryant's expression for Tc pass our test, whereas for a Il the other 
(and more commonly used) formulae one of the asymptotic values is erroneous. 
On the other hand, it .is interesting to note that for the two cases with 
correct limiting behaviour the expression for Tc is identical to the previously 
suggested formula (11), giving thereby further support to our claim for 
its validity. 
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Although an incorrect limiting value in no way implies that the values 
derived for practical experimental situations are necessarily doubtful too, 
the formulae which lead to the last two entries in Table 1 should clearly 
be preferred and considered as more serious candidates for describing 
the actual corrections needed, at least for the idealized conditions assumed 
in the underlying model. 

6. Outlook 

It is certainly gratifying to see that both a simple probabilistic 
argument and a check of the asymptotic behaviour lead to an expression 
for the transmission factor Tc ' for the case of equal count rates in both 
channels, which is ·in excellent agreement with simulations made in extreme 
conditions. Nevertheless, this does not guarantee that either Gandy's or 
Bryant's expressions are rigorous (and certainly not both, as they are not 
identical). In fact, it is obvious from its derivation that Gandy's result 
only gives the first (probably two) terms in a series development, and 
in view of the rapidly increasing degree of complexity there is little hope 
to go muc,h further. In contrast to this, Bryant's very elegant approach 
looks more promising. In the framework of his assumptions the results derived 
seem to be fully consistent, in particular also with regards to the randpm 
coincidences. However, some of the implicit additional assumptions ' 
(as e.g. the uniform overlapping of dead times) are not ful1y convincing 
to us and might be worth a more exacting study. 

ln this context it maya Iso be appropriate to remember that a rigorous 
mathematical solution of the coincidence problem, although most welcome, 
is only one part of the story. The other is that an important assumption made 
in the basic model is never really fulfilled in any experimental arrangement: 
the original Poisson process is always more or less disturbed by unavoidable 
dead times of the detectors or the electronics, and these effects may be 
important at high count rates. They are usually not weil defined and 
therefore difficult to account for. Pe~hQPs methods based on the empirical 
interva'l distributions might be useful for estimating their influence 
on the final result. 
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