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1. 1 ntrod uction 

ln its original and simplest form, the modulo technique is a method which 
allows to distinguish between events accuvring pairwise or individually 
in a random process [lJ. This possibility essentially stems From the fact 
that the quality of a number k of registered counts of being even or odd 
remains urichanged when any number of pairs are superimposed. Bya genera
lization of this simple idea to multiplets (K>2), one can also measure 
experimentally the frequenciesJdJ 1 K) with which, for a given measuring 
interval S , the number k of counts belongs to a certain residue class 
J (mod K), with J =0, l, .•• , K-l. 

If for the original sequence a specifie type of stochastic process is assumed, 
which may be characterized by the probability to observe exactly k events 
in a given time interval J , then the corresponding count rate 9 can be 
deduced from a measurement ofn(J 1 K), at least in principle. Practical 
difficulties which may arise are, for example, that a meaningful determination 
of p is not possible for f & '7 K or that occasionally there may be several 
possible solutions. However, these problems can be avoided by an appropriate 
choice of the experimental conditions. 

'~, 1Jf.I' .'~. 

ln the important case of a Poisson process, the probability for observing 
exactly kevents is known to be 

k 
P(-V(k) = tl .e-~, with f.L=~·S (1) . 

The modulo probabilities 

W(J 1 K) = Prob~k = J (mod K) ~ 

have been determined previously for this process. 
as (eq. 12 in [2J) 

l K-l -J ~(x.-1) 
W(JIK) =-2: x •• e 1 

K .-0 1 1-
, 

(2) 

They can be expressed 

(3) 
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K 
where x. are the K roots of the equation x = 1 . 

1 

For the special case K = 2 we therefore have 

W{JI2) = ~[1+{-1)J.e-2P-'J, J=O, l, 

since he-re Xo = 1 and xl =-1. 

2. Precision in the determination of f 

(4) 

ln order to decide on the presence or absence of multiple pulses, the count 
rate 0 , obtained by direct normal counting, is compared to the value p 

) tot 
which results from a comparison of the experimental modulo-counting 
frequency n(J 1 K) with the corresponding theoretical value as given in (3). 

The precision in the measurement as weil as the limit of detection of 
afterpulses are essentially given by the uncertainty of f' which, in turn, 
depends on the accuracy in the determination of:n(J 1 K). Therefore, an 
important first step consists in determining the statistical precision s{f) 
with which the count rate S' can be obtained in this somewhat indirect wa'!. 

The relation between the slope of the curve W{J 1 K), the experimental 
~~) uncertainty s{n) and the precision s{f) of the corresponding count rate is 

given (for small errors) by 

I ~ W{J 1 K)I = s{n) 
d ~ 8 . s{p) , (5) 

since the time interval (or delay in the correlation measurement) $ can be 
assumed to be known wi.th negligible error. By using eq. (20) of [2], the 
e rror in j'l(J 1 K) is see n to be give n by 

K 
s{TI:) = ~ . s{n J) , 

'l' "!,,. '-". ", 
(6) 

for fixed values of K, » and t. The corresponding experimental arrangement 
is represented in Fig. 5 of [2], where nJ is the number of test pulses 

which have passed the two gates during the measuring period t , for an 
oscillator of fre-quency V. For K = 2 the scheme also corresponds to the 
se t - u p B i n Fig. 1. 

ln order to estimate the statistical uncertainty s{n J)' we first need to have 

sorne idea about the distribution of nJ' If 9 is very large compared to v , 

there will be many events arriving during li)) , i.e. the states x
k 

describing 
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Fig. l - Schematic representation of three possible experimental set-ups 
for the modulo-counting technique, shown for the case K = 2. 
They are called 

A : complete arrangement, 
B : simplified arrangement (for J = 1), 
C : symmetrical arrangement (for J = 1). 

set-up 

A 

B 

C 

Agate is open only if the scale of two acting upon it is in the position 
(0 or 1) indicated by the number encircled. In reality, the delay 8 
will be produced by shift registers which are between the entrance 
and exit gates. 
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the random process will change a large number of times between subsequent 
test pulses. Correlation effects can then be ignored and the results of the 
periodic samplings become independent. In this case n J follows approximately 
the binomial law, i.e. 

n N-n 
Pro b (n J) = (N) p J . (l _ p) J, 

nJ 

where N = 'lJ • t and 

W(J 1 K) 
K 

The variance of n J is then given by 

2 
s (nJ) = N' p (1 - p) • 

Therefore 

s(n J) = .. ~ j N • W (K - W) , 

and with (6) 

s(Jr) = ft (~- W) 

This relation may be inserted into (5) and then leads to . 

( ) _ () f _.P jW (K - W) ~ dW 1 (
1 

s ~ - s TI" • ~., ~~I - ~ N (d ~ ~ , 

where the derivative of W can be readily determi,ned from (3) as 
'l' 1'!t ''''', 1 

(7) 

(8) 

(9) 

(10) 

dW 1 K-1 -J tv(x.-l) , 
-d - = K 2: (x. - 1) • x. . el. ( Il ) 
~ j=O 1 1 

Thus, for given values of K and J,. ail the quantities on the right-hand 
side of (10) are explicitly known and can therefore be inserted. In order 
to choose the "best" measuring conditions, we may demand that s(p) attains 
a minimum. The corresponding value of p.--(or p) can then be found as the 
solution of the equation 

d 
d ~ s(r) = 0 • 

Since, according to (10), s2(p) is inversely proportional to N = )). t, 
the statistical uncertainty in s> can not only be reduced by extending 

(12) 
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the measuring time t, but also by increasing the oscillator frequency lJ , 
and the question then arises as to which point the latter will be profitable. 
There can obviously be little or no gain in information if two test pulses 
follow each other so closely that there is practically no chance for en event 
of the stochastic process tohave arrived in the meantime. Besides, the 
distribution of n could then no longer be described by the binomial law. 
The question is t~erefore: which .is the smallest interval for the test pulses 
which still guarantees (at least to sorne reasonable degree of confidence) 
the independence of successive controls? A look at a number of graphical 
plots of W(J 1 K) - sorne of which have been given in previous reports - shows 
that as a rule of thumb we may assume that (for any J) 

W(J 1 K) ~ ~ 
K if fL = ~ Ô :> K • 

From this it may be concluded that 

but it will normally be safe to have the oscillator run at a frequency 
somewhat below this limit to assure independence of the checks. 

3. Measurements taken with the "simplified" arrangement 

(13) 

(14) 

Let us now perform sorne more explicit calculations for the important special 
case K = 2. We start with (10) and assume a simplified ex~erimental 
arrangement of the type sketched in Fig. 4 or 5 of ref. r2J. For convenience 
it is also reproduced as case B in Fig. 1. Either from (11) or directly from (4) 
we obtain 

dd(L' W (J 1 2) = (_ 1 )J+ 1 • e -2 (L , (15) 

where J = 0 or 1 • 

Inserting (4) and (15) into (10) yields 

--=--9 _ • j} [1 + (_1)J • e -2 p] [2 - } ! 1 + (_I)J • e -2(-"] 

fL JN e -2 \l' 

After sorne rearrangements, this may also be brought into the form 

ln order to determine the numerical value of f...I.' permitting the smallest 
uncertainty in .9 ' for given measuring conditions (characterized by the 

(16) 
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parameters p , N and J), we form the derivative of s(p). By denoting 

[3 e 4 (..{I + 2 (_ 1 ) J • e 2 !-l1 _ 1 ] 1 /2 = U , 

we find 

dU 
d~ 

and hence 

d 2 -L 2 fL J] 2 IL' d/Ls(P)""'U 3e +(-1) e ·f-L'-U. 

The condition (12) therefore leads to 

or 
4~ J 2 \-V 3 (1 - 2 IL) . e + 2 (-1) • (1 - p..) e = 1 • 

The numerical solutions of equation (18) can be found to be 

/-L --.J 0.534 

P-~ 0.353 

for J = 0 , 

Il J ;= 1 • 

(17) 

( 18) 
( 

(19) 

If these values are inserted into (16), we find for the minimum uncertainties 
in 9 

- for J = 0 S • (fi) -=::t.. 5. 15 p/IN 
min 

3. 82" ~lll\f 
-', 

- Il J = 1 s . (r) "" 
min 

(20) 

This shows that the choice J = 1 is to be preferred for this arrangement 
with K = 2 and that the delay should be such that p.- = p~ "" 0.35. It can be 
seen from Fig. 2, however, that the choice is not very critical. 

4. Possible merits of a IIcompletell or IIsymmetricalll measurement 

A closer inspection of the experimental arrangement reveals that the results 
obtained in section 3 can, at least in principle, be improved by a more 
symmetrical set-up. As a matter of fact, the expected number of registered 
pulses in a "completell measurement of the type sketched in Fig. 3 of ref. [2J 

is E ~ N J t = K • E~ n Jt . The corresponding arrangement for K = 2 is also shown 
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as case A in Fig. 1. Although for high values of K this would require 
a prohibitive increase in the complexity of the electronics (the number 
of gates being equal to K (K+1), for instance), this inconvenience might 
weil be tolerated for small values, and in particular for K = 2. Let us check, 
therefore, whether the gain in statistical precision would justify such a 
modification. 

ln this case we have 

(21) 

and (9) now becomes 

2 1 
s (TI) = N W (1 - W) • (22) 

ln contrast to (9), this formula is invariant against an exchange of W and 
1 - W. As can be seen from (4), this corresponds for K = 2 to a change 
from J = 0 to J = 1, and it explains why in the arrangements A and C the 
choice of J has no influence in this case on the precision with which the 
count rate can be determined. Thus for W = 1/2, for instance, the vq.riance 
would be reduced by a factor of K2 by the complete arrangement. 

ln view of (4) and (15), (10) now leads to 
1 

{J ~ 1 L- J -2 u'J [ 1 J -2 U"ll2" 2 Il. s(p) = EL IN ( 2" 1 + (-1) • e r- 1 - 2" (-1) • e 'J ~ . e r. 

After sorne rearrangements, this may be brought into the simple form 

By applying again condition (12) wefind 

e4lL' (1 - 21:'-') = 1 ~ 

the numerical solution of which is 

...; 
(J-' = 0.398. 

By using this value in (23) we get for the minimum uncertainty in the 
complete arrangement A, for both values of J, 

s • (9) ,.J 2.499 lIN". 
min 

(23) 

(24) 

(25) 

(26) 
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Since this is only two thirds of the smaller value reached in (20) by the 
simpler arrangement B, the improvement obtained by the complete 
measurement seems worth trying. Fig. 2 shows that the exact choice of ~ 
is even less critica 1 than previously. With increasing \JI, the ratio of the 
variances obtained on the basis of (16) and (23) tends towards the value 3. 

ln practice, the symmetrical arrangement C of Fig. 1 will be preferred 
which requires only two shift registers, instead of four in set-up A. Since 
N + N 1 = vt, this implies no 1055 of information. In what follows we shall 
as~ume that the arrangement C will be used. . 

If we apply (14), i.e. lJ = lJ ::: f /2 
max ' 

the minimum uncertainty (26) becomes 

5 • (~) ..v 2.5 p ~ 3.5 ff
t
-. 

min Jpt/2 V1 
(27) 

If this result is compared with the usual uncertainty resulting from direct 
counting (assuming Poisson statistics for k = P • t), namely 

tot 

, ~ 5 ( 0 ) = 5 (k) = Ik = to t 
1 tot t t t' 

(28) 

'c1"Ê) we see that the measurement of the count rate by the modulo technique 
is always about 3. or 4 times less precise than the direct counting method, 
whicll- is assumed to be applied in parallel, hence for the same measuring 
time t. The modulo technique is thus about 10 times less efficient in 
determining count rates, i.e. it would take 10 times longerto arrive at the 
same statistical uncertainty. This is hardly surprising in view of the indirect 
way the measurement is performed and the limited information used. However, 

.the interesting point is that the results obtained by the two methods have not 
to be idenHcal, in general, andthat the difference will allow us to determine 
the pair rate. 

.,/ 

5. Uncertainty in the pair rate 

Let us now consider the important case of an original Poisson process (of rate r), 
which is modified in such a way that occasionally a pulse appears as a doublet 
(or pair) instead of a single event. The corresponding probability willbe 
denoted by S. For a sufficiently long measuring time, we would then observe 
the mean rates 

fp = ~ 'S for pairs 

and = P (1 - S) s> 5 
Il singles, 

while the total pulse rate is obviously 

f =~+2·~. 
tot 5 p 

(29) 

(30) 
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-In general, however, the apparent pair rate P2 as weil as the apparent singles 

rate ~ 1 are not only a function of the length of the measuring interval S , 
but they will also depend on the interval distribution between the primary 
and the secondary pulses forming a pair. Since we are dealing with a stationary 
process, the relation 

f to t = Pl (b) + 2 • ~ 2 ( S ) (30') 

still holds for any value of J . It is important to realize that counting 
by means of the modulo-two technique gives directly 91 (S),remaining 

inse nsitive to ~ 2 (b ). 

Only two simple cases for the pair distribution will be considered here. As it 
has been shown previously ([1 J, [3J), the rate of the single pulses is given 

- for an exponential parent-daughter distribution, with mean T , by 

1 - e -J/T 
f 1 (d) = fi s + 2 f p ( J IT ) , 

which can also be written with (28) as 

1 _ e - SIT 
~ 1 (n = f to t - 2 f' p (1 - cf IT ); 

- for a constant parent-daughter interval T by 

if S ~ T , 

Il E ~ T 

=' i' - 2 0 • Max (0, 1 - TIS). 
tot ) p 

ln this case, there is no possibility of distinguishing between paired and 
single events for cf« T • 

The expression for the pair rate is therefore of the general form 

with 

r = 
p 

, 

~ 1 _!. (1 _ e - cS IT ) 

Q = (MaxS(O/ 1-T/J) 

for an exponential interval 

Il a constant interval. 

(31 ) 

(32) 

(33) 
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If the distribution of the pair intervals is not weil known, we can normally 
arrange (by lowering the count rate) that 6» T, and in this case we a Iways 
have Q '" 1. 

To achieve the high ,accuracy required in these measurements, corrections 
due to a possible dead time have to be taken into account for Ç' and el. 

tot 
The effect of dead time on the apparent pair rate 91 can be deduced from 

earlier discussions in [4J and [3J. Since these corrections have only 
a bearing on the best estimate of p , but not on its standard deviation, 

p 
we shall give no further details here. In what follows it will be tacitly 
assumed that the appropriate corrections have already been applied. 

To determine the uncertainty of p , it seems acceptable to neglect not only 
p 

the errors stemming from v and Q, but - in view of (27) and (28) - also 
from n • The main contribution is thus due to the experimental measurement .Ytot 
of'1t(J 12). From this quantity, as shown before, we can determine p, which 
in the present notation should now be ca lied f1' since the modulo-two counting 
is necessarily "blind" for pairs. 

Hence, we get from (33) for the statistical uncertainty of the pair raie 

1 
s(pp) = 2 Q . s(f1} , 

and therefore, by applying (23), for the symmetrical arrangement C 

(34) 

(35) 

A similar, although somewhat less favorable, result would be obtained by 
means of (16) for the simplified ar~çH~g.ement,;B. 

Using (26), the minimum uncertainty for the pair rate is seen from (34) to be 
given approximately by 

s • (r ) .-.J 2 1Q _P- 2.5 ,.J 

min p I"N 

for Q not too far from unit y • 

-p
v'"iit 

, (36) 

For small relative pair rates - and this is the case of most practical interest-, 
the probability e for afterpulsing is about 

~ 
ftot • 

(37) 
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By assuming wi.th v -- f'tot/2, according to (14), again the optimum 

conditions to be realized, we finally arrive for the uncertainty of the 
afterpulsing probability 9 at the estimate 

s • (p ) 
s . (9) ~ mIn p 
ml n ~ tot 

,.y~ = f . t . 
tot 

Obviously, this value also corresponds roughly to the limit of detection 
for afterpulses. 

Let us have a quick look at the numerical values implied by our final 
result (38). For a count rate of p = 2 000 s-l and a measuring time of 

tot 

(38) 

t = 1 000 s, the smallest detectable pair contribution has to be of the order 

Since according to (38) the sensitivity of the modulo method increases 
with the count'rate, we may try to improve the limit by choosing e.g. 

-1. -V) f = 20 000 sand t = la 000 s (= 3 h • In this extreme case, it thus 
tot 

seems possible to measure 9 with a precision of up to 

AJ -4 
s . (e) = la . 
mIn 

(39) 

(40) 

Thereby, we should keep in mind that augmenting the count rate may sometimes 
be in conflict with the requirement that S» T, since the optimum value of 
p" = q ~ ~ 0.4 can then no longer be realized for a given value of T. This 
lim.itation does not exist, however, if the interval density for the partners of 
a pair can be assumed to be known (e .g. exponential). 

On the other hand, the limited accuracy of the dead-time corrections, which 
are of the or.der of 15% in our second exéllflj5le (fo"r a dead time of about 4I;L-s), 
will certainly make it very difficult to achieve (40). It is fairly obvious that 
an estimation of the uncertainty for the count rate of multiple afterpulses 
(K > 2) could be made along similar lines, although the computational 
problems might become rapidly worse. In the absence of a real experimental 
need, however, we feel that such an exercise would be premature. 
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6. Final remarks 

The above results fo.rtne best measuring conditions have a direct and important 
bearing on the practical usefulness of the modulo technique, which now 
seems to be capable of a somewhat higher sensitivity than had been Çlssumed 
previously. The results of sorne earlier experimental measurements (by means 
of an arrangement of the type B}) are certainly not in conflict with the estimates 
of uncertainties given in this study, but the conditions were too far from 
optimum to permit a definite conclusion. Various series of new measurements, 
specifically planned for this purpose, will be needed to check the predictions 
in more detail. 

This report would certainly not have been written so quickly - if at ail -
without the kind, but repeatedsolicitation of Dr. P.J. Campion (NPL), 
and he should be thanked for his insistance. 
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