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1. The three types of counting processes 

ln the past few years, a number of rigorous formulae have been 
assembled for characterizing the statistics of an original Poisson process 
which has been distorted by the insertion of a dead time (see e .g. [lJ 
and [2J). Apart from the probability Wk(t) of registering exactly k counts 
in a given time interval t, the quantities one is most directly interested in 
from an experimentgl point of view are the first two moments, i.e. the 
expectation value k(t) for the number of events observed within t and 
the corresponding variance cr~(t). 

Unfortunately, these quantities depend not only on the original rate p , 
the length of the measuring interval t and the duration of the dead time-C 
and its type, but also on the choice of the time origine Table 1 summarizes 
the main features of the three types of renewal processes considered in 
what follows. 

Type of process 

ordinary process (or) 

equilibrium process (eq) 

free counter process (fr) 

Density of the first event for a 
non-extended (n) 1 extended (e) 

dead time 
1 

'1' "",. '-", 

f(t) f(t) 
n e 

n 
9 (t) 

e 
9 (t) 

n 
h (t) 

e 
h (t) 

Table 1 - Classification of counting processes and abbreviations used 

for their interval densities 
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Whereas in an ordinary process t = 0 coincides with a registered (but not 
counted) event, the time origin for an equilibrium (or stationary) process 
is chosen at random and can thus also fall within a dead time. On the 
other hand, in a free counter process the device is immediately ready 
to accept the first incoming eventi hence this process necessarily starts 
at a moment where no dead time is present. 

For multiple intervals, i.e. for the arrivai time of event number k > 1, 
the densities are given by the following convolutions: 

fk(t) = ~f(t)(k , 

gk (t) = g(t) * fk_1 (t) , 

hk(t) = h(t) * f
k

_ 1(t) 

If we confine ourse Ives to an original Poisson process, as will be the case 
in what follows, it can be shown that the following relations exist 

- for a no'n-exte nded dead time: 

- for an extended dead time: 

ln order to make equations more readable, only those indices (for specifying 
the process and/or the dead time) will be used in later sections which 
are supposed to be helpful in a given contexte 

2. Introduction 

Apart from sorne appl ications in the fie Id of corre lation counting 
(for a short review see [3J), where the effective individual measuring 
time may we Il be comparable to the length of the dead times involved, 
the usual situation is certainly that in which the time t of a measurement 
exceeds by far the nominal value (; of the dead time as weil as the mean 
interval l/p between pulses of the original sequence. Although in the 
case of a distorted Poisson process the limiting condition t/-r ~ 00 would 
be sufficient, we prefer for practical purposes to add the requirement that 
also p t ~ 00 , as this will permit us to neglect terms-which include 
a fa c to r exp (- pt). 

The important point for us is that - independentlx.. of the problem of finding 
the weakest conditions - the exact formulae for k(t) and cr'2k(t), which 
are often rather involved, may be greatly simplified for t ~ 00 • The 
so-called asymptotic results have been given in [1 J for the case of 

(1 a) 

(1 b) 

(1 c) 

(2) 

(3) 
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a non-extended dead timei here a unified treatment will produce the 
expressions for both types of dead time. 

Therefore, the purpose of the present study is twofold. On the one hand, 
it should provide us with a deeper insight into the mechanism of these 
processes. On the other hand, we shall arrive at some new forms of 
asymptotic results not commonly known, in particular those pertaining 
to an extended dead time. In addition, the novel approach permits 
independent checking of earlier results (some of which had been at 
variance with previous claims). In view of the usually quite cumbersome 
arithmetic involved, such controls are certainly most welcome. 

ln this first part ail the relations concerning the asymptotic expectation 
values will be discussedi the second part will do the same for the variances. 
A more elegant treatment of these problems, based on some general 
asymptotic results for renewal processes of the type first derived by Smith 
[4J must be postponed for the moment since the corresponding formulae 
for a modified process are not yet readily available. We hope to be able 
to fill this gap in a near future. 

3. Ge ne ra 1 re ma rks 

Let us consider a counting process with a total measuring time t 
which has been arbitrarily split up into two parts. In general, then, it is 
unfortunately not true that the expectations (M) as weil as the variances (V) 
are simply additive for the partial intervals t1 and t2. The reason for this 
is that the corresponding relations 

M(t = t l + t l 
) 

1 2 
and 

V(t = t l + t l
) = 

1 2 
'~I ~,. ,-.J" 

taken a's functional equations, would imply solutions of the form 

M(t) = 0( • t 
1 

and V(t) = ex 2 • t • 

We know, however, that this proportionality to time is fulfilled neither 
by the exact nor by the asymptotic relations [1] • Even for the equilibrium 
process only (5a) holds, but not (5b). It follows that for the level of 
approximation we are interested in, the relations (4) suggested by Goldanskii 
et al. [5J are only applicable to an undisturbed Poisson process, where, 
in the absence of dead times, both 0( 1 and Cc'2 are equal to the original 
count rate 9 . 

The physical reason for the failure of (4) is, of course, that the two parts 
are no longer independent. The dead times following the registered counts 
have an aftereffect by coupling subsequent intervals which then become 
statistically correlated, at least to some extent. 

(4a) 

(4b) 

(5a, b) 
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Although equations as those in (4) can therefore not be expected to give 
a valid description, it would still be very nice to have a simple additive 
system of a somewhat similar type at hand. This can indeed be arrived at 
if we allow the functions M in (4) (and likewise V) to be different, 
although weil defined. 

4. Evaluation of the expectation values 

ln the general case, where the total measuring interval of length t 
is subdivided by t l into two complementary sections, the expectation 
for the number k of events in t can be written as 

t 

k(') = J 'f' (,') . [k1 (t') + k2('-")] dt' , 
o 

where 

f (tl) = interval density for the arrivaI of an "event" at t l (as for instance 
f{t l) or g{t l) when registering a pulse at tl), and 

k
1

, k
2 

= number of counts in the first (or second) section. 

If t l ::::: t. denotes the arrivaI time of event number j in a renewal process 
starting lat t = 0, then obviously k1{t

j
) = j and we get 

t t 

k{t) = j fep (t.) dt. + flf{t.)· k2{t-t.) dt. 
1 1 1 1 1 

o 0 

Since we are only interested in asymptotic relations, i.e. in the limiting 
case of very long intervals t, the integrations may be extended to infinity, 
which will simplify the calculations consider~bly. Thus 

'l' "',,. ....... ' 

co 

j + J f (t j) • k2 (t-t j) 

o 

dt. 
1 

ln the approximation used here the expectations k
2

{t) are always of the form 

k
2 

(t) = 0(. t + ~ , 

where c( and ~ depend on the type of the process and of the dead time 
chosen. More precisely, 0( is the (equilibrium) count rate at the output. 
For an original Poisson process with rate f ' we therefore have 

(6) 

(7) 
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~ ~À if 'L is non-extended 
1 + 1''!" -

o{= -pT 
r· e = l' Iy Il r Il exte nded i 

the IIshifts ll ~ are not really needed for the moment and will be determined 
later (cf. Table 3). Therefore, (7) can also be written as 

00 00 

A 

k(t) ::: j + (C('+P) J'f(ti) dt. - o(f'i (t.) • t. dt. 
1 1 1 1 

= j+o(t+~ 

o 

C( t. 
1 

0( t. , 
1 

o 

where t. is the mean arrivai time for event number 
(startingl at t = 0). 

in the first process 

If we denote the contributions from the two sections by K
l 

and K2' we can 
forma Il y say tha t 

with 

For j = l, 2, ••• , t l is the arriva 1 time of a regist~red puls~ and the 
second part is therefore an ordinary process, i.e. k

2
(t) = k(t). 

or 

Obviously, the case of most practical use of (9) is for j = l, i.e. 

A. A .~, Pf," , .... , 

k(t) -.J k(t) + 1 - ~-tl • 
or 

-'1 

ln order to simpl.!!y the application of (11), the mean values tl as weil as 
the quantities <:l( tl are listed in Tables 2a and 2b, which are taken in part 
from [6] . 

A 

These results for the subdivision of the expectation value k(t) mayappear 
to be fairly trivial. If they are presented here in sorne detail ail the same, 
this may be justified by the fact that they can serve as a mode 1 for the 
somewhat similar but more complicated situations we shall meet later in 
the evaluation of the asymptotic variances. 

30 

(8) 

(9) 

(10) 

( 11) 



ordinary process 

equilibrium Il 

free counte r Il 

6 

dead time 
non-extended extended 

1/0q» 

(1 + À x 2
/2)/p 

1/9 

y/9 

(y - x)/p 

l/f 

Table 2a - The mean arrivai times t1 for the first event of a Poisson process 
(origina 1 count rate ~), distorted by a dead time r. The abbreviations 

use d a re 1 f' 'ï 
x = p"C, À = 1 + ri" and y = e 

dead time 
non-extended extended 

,ordinary process 

equi 1 ibrium Il - x/y 

free cou nte r Il l/y 

Table 2b - The quantities oc. tl appearing in (11), with abbreviations 
as in Table 2a. 

5. Expectation values for a non-extended dead time 

Let us first consider an ordinary renewal process of duration t. 
The time origin is thus given by the arrivai of an event which is followed 
by a non-extended dead time. A paf.ti,~llIlarly'simple decomposition can 
now be ~btained by choosing the end of this d~ad time (although this is not' 
an arrivai time) for subdividing the time interval, hence t l = 17. In this 
case, the first part fa Ils completely within the dead time and therefore 
contains no registered event, whereas the second is a free counter process 
of duration t - 1:'. Hence we can write for the expectations 

or 
k{t) = Kl + frk(t - 'ï), 

i . e • A 

frk(t) = 
A 

k(t +'T), 
or 

since K
l 

= o. 

It is amusing to see that this result could aLso have Abeen obtqined froT (9) 
for i = O. With t = 1: and by specifying k(t) = k(t) and k

2
(t) = f k(t), 

o or r 

(12 ) 
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we arrive indeed at 

ork(t) = fr k2(t) - D('t 

= o«(t -1:') +~ = frk(t -'t) 

This corresponds to the case where we take the end of the first dead time 
as the lIarrival li of a fictitious event number zero. However, since the point 
t l = to merely serves to subdivide the interval t, the acceptance of (12 1

) 

does not presume any belief in the existence of ghosts; it only supposes 1; 

to be non-extending. 

A more systematic approach may be based on (11) which can be written 
in the form of the difference 

A A.,...,." _ 

k(t) - k(t) = 1 - O(t • 
or 1 

By specifying the process considered we find readily, using the information 
of Table 2b, 

- for an equilibrium process: 

k(t) - k(t).J 1 - Â (1 + -2
1 

À x
2

) = À x (1 - -2
1 A x) ; 

eq or 

- for a free counter process: 

k(t) - k(t).v 1 - À = À x • 
fr or 

Finally, the difference between (14) and (13) yields 

Jo. Jo..-v 1 ,,2 2 
k(t) - k(t) = - f\ x • 

fr eq 2 

Since it is known from general cons.j,d~r.(ltions';that for an equilibrium process 
the re laOtion ' . 

k(t) = À f t 
eq 

holds exactly, we can easily pass from the differences given above 
to the full values for the asymptotic expectations of k, namely 

and 

The relations (16) to (18) are in agreement with the corresponding values 
as stated in [lJ. Likewise (12) is readily seen to be consistent with (17) 
and (18). 

30 

(12 1
) 

(11 1 
) 

(13 ) 

(14) 

( 15) 

(16) 

( 17) 

( 18) 
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It should be mentioned, perhaps, that (17) and (18) may be written in 
a number of equivalent ways; the choice among them is largely a matter 
of personal preference. Possible alternative forms which contain only À 
in the corrective term"s are for example 

6. Expectation values for an extended dead time 

For an extended dead time, thereaso:nihg? remain essentially the same 
as before. Only in the event that we are interested in knowing the 
correspondance to our previous relation (12), we have to take into account 
that the effective dead time is no longer constant since it can now be 
extended. If its mean duration is denoted by L ff' the formula corresponding 
to (12) now reads for an extended dead time e 

A 

k(t + 17 ff) . or e 

The unknown quantity l:eff can be determined in several ways; some cH them 
will be discussed later (see (27) and the Appendix). 

Again, the differences are determined by (11 1
). With the values from 

Table 2b we obtain 

- for an equilibrium process: 

k(t) - k(t) ~ x/y ; 
eq or 

- for a free counter process: 

. k(t) - k(t),..J (y - 1)/y " ~,-. 
fr or 

This yie Ids for the d iffe re nce 

k(t) - k(t) ~ (y - x - l)/y . 
fr eq 

Since for the equilibrium process the expectation is known to be 

A 

k(t) = P t/y , 
eq 

one readi Iy gets for the other cases 

k(t) ~ (pt - x)/y , 
or 

frk(t) ~ (ft-x+y-1)/y 

( 17 1
) 

(18 1
) 

( 19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 



9 

We note that (24) and (25) are rigorous solutions for any t > 1; since 
the total renewal density is known to reach its final value at t = ï 
for an extended dead time (compare [7J). This is confirmed by the result 
of dire c t ca 1 cul a t ion s [2 J ) • 

Let us now quickly come back to (19). A comparison between (24) and (25) 
a Ilows us to write 

or 
k[! + (y-l) /r] , 

from which we deduce the value 

1: = (y - 1)/0 eff f 

for the mean length of the effective dead time. This indirect way of 
reasoning is in agreement with the result (A8) obtained in the Appendix 
by a more general method. 

7. Survey of the results 

ln Table 3 the main asymptotic relations derived in this report are 
1 

put together. As there exists quite an extended (and occasionally som'ewhat 
confusing) literature on this subject, an attempt to make a complete survey 
would hardly be profitable. On the other hand, we ma"de sorne effort 
to trace the first reference for a given explicit result k(t), although we may 
have missed sorne of them. For this task, the recent bibliography [8J 
has proved useful. One of the main difficulties we met in comparing 
the results of different authors stems from the fact that in many cases 
the exact experimental conditions (i.e. type of process and dead time) 
are not clearly stated. Complements and rectifications by readers would be 
very welcome. 

30 

(26) 

(27) 
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- For a non-extended dead time: -------------------
A 

Type of process k(t) 

ordinary process Â ( ~ t - x + Â x 
2 
/2) 

equilibrium " À ~ t 

free counter " Îd r t + À x 
2 
/2) 

- For an extended dead time: 

Type of process k(t) 

ordinary process 

equilibrium " ~t/y 

free counte r " (pt-x+y-1}/y 

Earliest 
references 

Comment 

[9] , 
eq. 20 

[10J,1 
eq. 29

1 

2 

[11] ' [12J ,1 
eq. 29 eq. 111 

Earl iest 
refe re nces 

Icomment 
1 

[1 01, 
eq. 42 

[13 J, 
p . 56 

1 

[11]*, [14J'1 
eq. 45 eq. 22 

3 t 

2 

3 

A 

Table 3 - Summary of the asymptotic formulae for the expectation k(t) 
of the number of events io q. .measuning interval t, if an original 
Poisson process with rate p has been distorted by a dead time "[; 

,.,.. '\ -1 x 
The abbreviations used are x = ~ (." Il = (1+x) and y = e • 

Comments: 

1. Campbell's result ~ 
1 + x 

2 2 x + x 

2 (1 + x)2 
is readily shown to be identica 1 to (17). 

2. This is a "classical" formula, although it has rarely been recognized 
to be valid only for an equilibrium process. 

3. This result has actually been first obtained as the exact solution for t > (.,. 

* Afterallowance for an obvious misprint which has, however, been 
ta ke nove r in [1 5 J • 
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APPENDIX 

On the effective length of an exténded dead time 

Let usconsider a Poisson process of count rate l' ' where every incoming 
pulse is followed by a dead time of duration 1; • After each outgoing or 
registered pulse there is a period of paralysis which may last from -c; to 
any arbitrarily large value. We are now going to determine the density 
for the effective duration of this paralysis for a nominal value 1: of the 
extended dead time as weil as the corresponding first few moments. 

The Laplace transform of the desired density D(t) has been indicated 
a long time ago by Feller [llJ*; it is 

90 tJ 

= (9+s) ·e-(f/+s)1: 
O(s) -..e~D(t)~ -(r+s) 1.. • (Al) 

s+f'·e 

It may be 'interesting to find the corresponding original. For this purpose, 
we write (Al) in the form 

"V 

D (s) = 

= 

S' ·e-(P+s)'"C 

-(p+s)-c 
s + p . e 

..., s -' 
f(s) + -f . f(s) , 

e e 

or 1 i kewise for the ori gina 1 

-(~+s)l: 
+ s· e 

-( fi + s) (.. 
s + ~ • e 

D (t) = 1 d 
f(t) + - -

e p dt 
f(t) . 

e 

,.., 

(A2) 

The rea.son for this decomposition 1 ies.,.i.n. the~act that e f(s) is a we II-known 
transform we met before in a similar context (see [7J, eq. 11 1

). The 
corresponding original density has been found to be 

00 (_T.)j-1 
-jx 

f(t) fL U (T.) • 1 (A3) = 
(j-1)~ 

. e 
e 

j=l 1 

where T.= 
1 

pt - jx , x = g""C and U is the unit step function. 

* His equation (42), after correction of an obvious misprint. 
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If we re me mbe r that 

the contribution of the discontinuity of ef(t) at t = "li to the derivative 
is seen to be ~ e-X ' 8 (t -1;). Hence we can write 

00 (j_1)(_T,)j-2 . 
= d (t - 't) . e -x + L U(T.) • . 1 • (- ~) • e -IX 

j=l 1 (1 - 1) ! 

00 (_ T ,) j -2 . 
r -x """" 1 -IX = 0 (t -1:) . e - f L U (T j)' (j _ 2) ! . e 

j=2 
(A4) 

By summing(A3)and (A4)we obtain for the interval density of the paralysis 

00 l (_T.)j-1 . (_T.)j-2 .! 
D(t) = 8 (t--c)' e -x + f' e -x. U(T 1) + f.~ U(T,) ('_11) l'e -IX - nTT' e -IX 

1=2 1 1. 1. 
. f 

00 • (_T.)j-2 

= S (t-"t'). e -x + f' e-
x

. U(T 1) + iL U(T.)·e -IX. (-T.-j+1)' ('_Il) f 
j=2 1 1 1. 

00 • (_T.)j-2 

= b'(t-1;)' e-x - f2 U(T.)· e- IX • (T.+j-1)' ('_11) 1 (AS) 
j=l 1 1 1 

For a very low count rate (fi ~ 0), (AS) reduces to 

D (t) --;~~ $ (t - T) , 

as it obviously should do since in this limit overlappings of dead times 
disappear and the extended dead times become non extended with a fixed 
le ngth "L • 

More explicitly, the density (AS) can be written for the various intervals as 



13 

0 for t < 1: 

Yo 
Il t = 't' 

Y1 
Il -c <t~2-C 

D (t) = 
.~ 3 T Y1 + Y2 

Il 21; <: t 

Y1+ Y2+ Y3 
Il 3-C <t ~4r 

Y1 +Y2 +Y3 +Y4 
Il 4-C <t ~5(; 

. . . , 
where 

Y - S (t- T) . e -x , o -

-x 
Y1 = j'Je , 

-2x 
(~ t - 2x + 1) , Y2 

= - ~ e-

l -3x 
Y3 

= 2' f e (p t - 3x + 2) (p t - 3x) , 
1 -4x 2 

Y4 = -6"pe (~t-4x+3)(pt-4x) , 

<)0 fJ 

(A5 1
) 

As usual, the quantities of direct physical interest are the moments of 
lowest order. However, (A5) does not lend itself easily to their evaluation'. 
Instead it is preferable to go back to the simple decomposition (A2 1

) 

and derive the moments by algebrals manipulations with the transform. 
Using the result for the transform f(s) as given after eq. 31 in [7J, we find 
(since k=l and R=y/p) e 

.-.J 

D (s) = 
.....J S 
f(s) . (1 + 0') 

e J 2 3 (A6) 

= 1 - ~ (y - 1) + ;2 Y (y.;.-.?< - 1);- ;3 Y [y(y -2x -1) + x(l +x/2)] ~ .•• 

For the corresponding ordinary moments of order r, which can be derived 
by applying the formula 

m (t) = (_1)r d: 0(5)1 ' (A7) 
r ds s=O 

we obtain 

m (t) = l, 
o 

m
1

(t) = 
m

2
(t) = 

m
3

(t) = 

(y - 1)/p 1 

2 
2y ~ - x - l)/ f and 

6y Ly2 - y(l + 2x) + x(l + x/2)] / f> 3 

(AB) 
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For the central moments, this leads after some rearrangements to * 

fL2 (t) 

(A9) 

(L3 (t) 

(A 1 0) 

For checking purposes, we are also interested in the limiting values 
for ~ ~ O. A short calculation gives, including the lowest non-vanishing 
orderof x, 

m 1 (t) ~ ~(1 + x/2) ~ T, 

t'-2 (t) - 1 3 2 o , 3" x /r ~ 

f.l-3 (t) 
,v 1 4/ 3 o , - '4 x f ~ 

as was to be expected for the limit where D(t) = S (t -î). 

It may be worthwhile mentioning that there exiSts also a simple direct way 
to obtain the effective length t..

eff 
= ml (t) of the paralysis following 

a re gis te re d pu 1 se • 

For an original count rate f ' the output rate R is known to be (say for 
an equilibrium process, or just for t sufficiently large) 

- for a non-exte nded dead time '""t : 

R - f 
n l+f"t' 

(A 11) 

- for an extended dead time 1: 

-DT eR = p.e l • 

It follows from (A 11) that the original count rate is given by 

R 
n 

Thereby the term nR 1: indicates the fraction of time occupied by the 
dead times following the registered events. Hence, there must also exist 
a formula equivalent to (A13) for the case of an extended dead time, 

* (A9) agrees with a result given by Feller [16] • 

(A 12) 

(A 13) 
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namely 
R 

f = 
e 

Inserting (A 12) into (A 14) gives readily 

_1'1; 
P • e 

fi = - _fi;' 
l-l,.,eff· e 

from which we obtain 

_ 1 f 1: 
Leff=f(e -1), 

in agreement with (27) and (A8). 

As for the moments of order two and three determined before, and which 
cannot be found in such a simple way, they may prove useful in 

(A 14) 

(A 15) 

a generaldescription of counting processes where the dead times are 
supposed to be non-extended, but of a random nature. Using the respective 
moments up to the third order then gives an approximation which should 
be adequate for most practical purposes. f 

Re fe re nces 

[5J 

J. W. Müller: IISome formulae for a dead-time-distorted Poisson 
process ll

, Nucl. Instr. and Meth. 117,401 (1974) 

J. Libert: IIStatistique de comptage: à propos d'une expérience 
récente ll

, Nue\. Instr. ancLf'.ô~.th. 12;6,589 (1975); 
" --,-

id.: IIStatistique de comptage du compteur 1 ibre Il, to be publ ished 
in Nucl. Instr. and Meth. 

J • W. Mü Ile r: Il Princip les of corre lation counti ng Il, 
Rapport BI PM-75/5 (1975) 

W.L. Smith: IIAsymptotic renewal theorems ll
, Proc. Roy. Soc. 

Edinb. A 64, 9 (1954) 

V.I. Goldanskii, A.V. Kutsenko, M.\. Podgoretskii: IICounting 
Statistics of Nuclear Particles ll (Hindustan Publ., Delhi, 1962), 
chapter Il, par. 6 



[8J 

[9J 

[10J 

[11 J 

[12J 

[13J 

[14J 

[16] 

16 

J.W. Muller: "Explicit interval densities for equilibrium counting 
processes", Rapport BIPM-74/6 (1974) 

id.: "Interval densities for extended dead times", Rapport BIPM-112 
(1971) 

"Bibliography on dead-time effects", Rapport BIPM-75/6 (1975) 

L. L. Campbe Il: "Standard deviation of dead ti me correction 
in counters", Cano J. Phys. 34,929 (1956) 

1. De Lotto, P.F. Manfredi, P. Principi: "Counting statistics and 
dead-time losses, part 1 11

, Energia Nucleare.!..l, 557 (1964) 

W. Feller: liOn probability problems in the theory of counters ll
, 

in Courant anniversary volume (Interscience, New York, 1948), 
p. 105 

T.E. Hull, W.A. Wolfe: liOn inverting Laplace transforms of the 
form h(s)/[p(s)+q(s) exp(-l;s)]II, Cano J. Phys. 32,72 (1954) 

A. Foglio Para, M. Mandelli Bettoni: "Counting statistics of nufclear 
detectors", Nuc\. Instr. and Meth. 70, 52 (1969) 

M. Fe ix: "Théorie de Ile nre gistreme nt d lévéne me nts a léato ires", 
J. Phys. Radium ~, 719 (1955) 

A. T. Bharucha-Reid: IIElements of the Theory of Markov Processes 
and their Applications ll (McGraw-Hill, New York, 1960), p. 306 

W. Feller: "An Introduction to Probability Theory and its Applications, 
vol. Il" (WiJey, New York, 1966), p. 364 

·,1 "ft ...... , 

(De ce mbe r 1975) 


