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1. General relations 

For a renewal process [lJ, the interval t = tj+1 - t
j 

between the 

arrivai times of two consecutive pulses is described by a probability 
density f(t). Since the process is independent of its IIhistory ll (renewal 
property), the case of multiple intervalsoforder k, where t=t'+k -,t., 

1 1 
is equally simple to treat and the corresponding density is known to be 
given by the k-fold se if-convoi ut ion 

*k 
fk(t) = ~f(t)t ' k=1,2, .•• , 

with f
1 

(t) = f(t). 

The only difficulty arises in connection with the arrivai time of the first 
pulse. As a matter of fact, the density for thisevent is in general only 
equal to f(t) if the beginning of the measuring interval coincides with 

(1) 

a pulse. Although such a synchronisation could easily be achieved for most 
practical cases, this is seldom really'1'done. Instead, the usual experimental 
situation is such that there is no definite relation between the arrivai times 
of the pulses and the time origin, which is then said to be chosen lIat random ll

• 

The corresponding series of events is called an equilibrium renewal process. 
ln this case, the density g(t) for the first pulse will be modified accordingly 
andit can be shown to be given by 

C>O 

g(') ~ fi-1f(X) dx , (2) 

t 
ex> 

with 
-1 

=J t • f(t) dt • l-l 
0 

j 
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Since fL-1 is the average time interval between pulses, I..t corresponds to 
the me~n count rate of the process for a measuring time which is much longer 
than ~-1. 

The arrivai time of event number k > 1 can thus be decomposed into k-1 
intervalswith density f and one (the first) with density g. Therefore, for an 
equilibrium process, the probability density for the arrivai time of event 
number k is given by 

k = 1, 2, ••• , (3) 

where 91(t) is identified with g(t). For sorne applications, it is also practical 
to define 9 (t) = S (t). 

o 

The evaluation of gk(t) is greatly simplified by the use of Laplace transforms. 
By putting 

,-v 

- f{s) , 

the equations (1) to (3) now read [2J 

fk(s) = [T{s)Jk , 

whence f (t) = ~ (t) ; 
o 

9(S) = 1!::. [1 - 1(s) ] 
s 

and therefore 

The cumulative distributions of fk(t) and gk(t) are defined as 

t 
~, Pif· ,"'tI •• 

t 

Fk (t) - f fk(x) dx and Gk(t) - l gk (x) 

0 0 

with F (t) = G (t) = U(t) • 
o 0 

Therefore, the original of (6) can also be written in the form 

gk(t) = p-[Fk_1 (t) - Fk(t)] • 

We conclude from (6) that 

:t 9 k (t ) = ~ [f k _ 1 (t) - f k (t ) ] 

dx , 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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thus, in particular for k = 1; 

Hence 

for t > O. (10) 

It is the aim of this report to give explicit expressions for the equilibrium 
densities gk(t) in the case of an original Poisson process which has been 
modified by the insertion of a dead time which is either of the non-extended 
or of the extended type. 

As a matter of fact, an expression for Gk(t) has been used previously in 
deriving the probabilities Wk(t) for observing exactly k counts within 
an interval t, and related quantities, for an original Poisson process 
distorted by a non-extended dead time [3J . In recent problems, however, 
explicit forms of gk(t) were needed as for instance in the determination of 
the arrivai time of pulse i, when the total number N ~ i of observed events 
in t is given. For the case of an extended dead time, we know of no previous 
attempt to determine gk(t). 

2. Non-extended dead time 

For a Poisson process (with original count rate p ) which has been 
modifjed by a non-extended (n) dead time ""t' , the density for the k-fold 
interval is known to be [4J 

[\-' (t - kt")] k-l 

n f k (t ) = U (t - k 1;) • .p • --(-k----l--:-)""'":"!-

This gives for the cumulative distribution 

t f (r;..R'"t') 
k-l 

nFk (t) jnfk(X) dx i U(z) 
z = = 

(k-1) ! 
0 0 

U(T k) 
Tk 

f k-l -z 
dz , = z • e 

(k-1) ! 
0 

where T k = ..f(t - kT) • 

-z 
dz • e 

The transformation of the incomplete gamma function (by integrating by 
parts) into a cumulative Poisson distribution according to the relation 

(11) 

(12) 
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x 

J 
-z k-1 e • z dz = 

o 

00 xl -x 
(k - 1) ! :2 71 . e 

j=k 1 • 

(13) 

(14) 

where Pk(j) is a~ abbreviation for the "shifted" Poisson probability 

TI -T 
k k 

Pk(j) = 71 . e • (15) 
1 Q 

According to (2) and (11) 

C>cJ 

-1 j -p(t--c) 1-fL n= 9 t· e dt = "f + (., . 
't; 

Eq. (8) now' yields for the k-fold interval density with a non-extended dead 
time (k = 1,2, ••• ) 

r 
k-1 k-2 Ji 

ngk(t) =~n _ U(T k-1) - U'(T k) + U(T k) ~O Pk(j) - U(T k-1) ~O Pk-1 (j) , (16) 

or in a slightly different, but equivalent form 

0 for t < (k-l) 1: 

ngk(t) k-2 

1-~ Pk- 1(j) Il (k-l)T<t~k-C (16 ') = 
(-Ln " 1=0 

't ~ k , 

where - ~ P'n - 1 + ~ 'r • 

For the lowest values of k, this gives in particular 

- for k = 1: 

for 0 < t 4 T 
1 + p"C 

(17) 

1 +fc 
- D(t-<;) . e T " t ~ T , 
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- for k = 2: 

o for t <.. T ..... 

Il 'C ~ t ~ 2 /, (18) 

~ -f'{t-2'I:") [ - -~j;J 1 + p'l; • e 1 + f (t - 2 t. ) - e 

- for k = 3: 

for t ~ 2 T 

Il t~.3T. 

ln Fig. 1 the interval densities nf(t) and ng(t) for the first pulse are shown. 
These experimental distributions agree very weil with the theoretical shapes 
as given by (11), for k = 1, and (17). 

3. Extended dead time 

The interval density for a Poisson process (original rate p), distorted 
by a dead time 'L of the extended type (e), has been found previously 
to be (compare [5J, eq. 26) 

k _ 1 J .' ~, ,'" 

efk(t) = p (-1) 2: kA.(t), 
i=k ' 

k = 1, 2, ..• , (20) 

(_To)i- 1 

h A() ( i-1) , 
w ere k 0, t • - k-l (j-1)! 

_., y'I" 
• e 

and J = [[ t/?;]] . 

This may also be written more explicitely as 
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Fig. 1 - Experimental measurement of the interval density of pulses 
from a radioactive source. The measuring conditions are 
f ~ 2 000 s -l, 't"::::: 400 ~s and 

a) time origin given by a pulse 
b) random start. 

Thedead time is of the non-extended type. 
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o for t <. k t 

kAk(t) Il kT < t t. (k+ 1) 1: 
" 

kAk (t) + kAk+ 1 (t) 
(20 1

) 

Il (k+ 1)17 6 t ~ (k+2) 17 

kAk(t) + kA k+1(t) + kA k+2(t) Il (k+2)T ~ t ~ (k+3) 0 

ln what fol1ows, two different ways will be sketched to obtain the required 
densities gk(t) 0 Whereas in the first approach we first determine Fk(t) and 
then use eq 0 (8), the second derivation is based on integral transformso 

a) !?.!..r=-~_d~~!:~.!..0.!l_o.i egk(!L 

A term-by-term integration of (20) requires the evaluation of 

t _0 r; t 

f i - 1 e 1 P i 1 fil d'x 
kAol(x) dx = (k 1) 1 (-9) - (x - il;)-

- , (j-1). 
o p; 

i- 1 e-if-r 0-1 1 0 
= (k - 1 ) (j -1)! ( - f) 1 ï (t - i"t) 1 

-i 9~ 
= .:.J..(i- 1 )e (-T)i. 

~ k-1 i ! i' 

which gives for the cumulative distribution of efk(t) 

k J 
eFk(t) = (- 1) L kBo(t) , k ~ 1 , 

i=k 1 
"#' ~/. '-'., 

o 1 (-TJI 
1- 1 

where kSol(t) ::: (k-1) 0 1 
1 • 

-i or • e J • 

(21) 

(22) 

For an exte nded dead time, the asymptotic mean count rate is known to be 

- ol:; 
~ = f 0 el, 

e 

if the underlying original Poisson process had a rate p 0 

The corresponding equilibrium densities gk(t) are again derived by using 
the general relation (8). Since according to (7) and (22) 

F (t) = U(t) 
e 0 

(23) 
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and 

we obta i n from (8) for t > 0 

l J (-T.)I .-c] 
e 9 1 (t) = ~ 1 + L . 1 • e -1 ~. = 

\ e '-1 l' 1- • 

For k >- 2, .we can write 
/ 

e9k (~) = ~e [Fk_1 (t) - Fk (t)] 

[ 
k 1 J . 1 (- T.) i 'l~" k J . 1 ( - T.) i _. ()'i~ 

= /-L ( - 1) - 2 (1-) . 1 . e -1 S'_ (- 1) 2: (1-) 1. e (r 

e '-k 1 k-1 l ' '-k k-1 '1' 1--. 1-· 

since 

white 

and 

,[ k 1 J (_T.)i ''[J' 1 . 1} 
=~e (-1)-? '1,1 'e-L91(~:2)+(~:1) 

I=k D 

k-1 k-2 k-1 -(k-1)fL, ( - T )k-1 -J 
+ (- 1) ( k-2 ) (k-1)! . e 

[ 

k - 1 J (- T .) i ( i ). e - i ~7;+ T ~: ~ . e - (k - 1) f lJ = (- 1) 2: . ,1 
P-e j=k 1. k-1 (k-1)! 

T J. (- T.)i -
=f·e-Ç~(-1)k-1.2 (k~l) .,1 'e-if'L-

l=k-1 1 .' 

- ( )k- 1 J 
-fJl.- -1 '"" 

= e . e (k-1) " L 

k-2 ) 
(k-2 -

j=k-1 

for k ~ 2 , 

= (n+ 1 ) 
k 

(i- k+ 1) ! 

• 1 1 
(k~ 1 ) :-,.' = , " . (k-l) , (j-k+l). 

, 

A comparison with the formu la for 91 (t) de rived above shows that (24) 
i sai so va 1 id fo r k = l • e 

(24) 
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The explicit forms of egk for the lowest values of k are therefore 

- for k = 1: 

- for k = 2: 

- for k = 3: 

- J [- f (t - i -r)] i _ 0
1 

0 T 

=foe-~.J(.,L 'e s'-, 

i=O i ! 

<"" J [- f (t - i 1:)] i 
_ ~' ~ """ 

= - f' . e ~ '( 0 _ 1) 1 

-01: 
= ~. e J 

2 

1-1 1 w 

J [- f' (t-iT)] i 

~ (j-2)! 

_"fiT . e 1 , 

- i Si L . e , 

whe re a Iways J = [[tir]] . 

Fig. 2 gives experimental realizations for the interval densities ef{t) and 
eg{t). Again, there is very good agreement with the shapes predicted (by 
(20), for k = l, and (25). 

(25) 

(26) 

(27) 

Before making more detailed calculations, let us first have a closer 
look at the Laplace transform of g{t). From previous results [5J we know 
that e 

-(s+J) r _ X(s) 
= 9 °e = 

-(s+y) L 1 - X{s) , 
s+Çl 'e 

f{s) = 
e 

(28) 

_ f. -(s+9)1: _ "Ilf-è' -s~ 
with 'X(s) = - - e - - - • e 

s s 
(29) 

The gE;lneral relation (5) therefore leads to 

r-J (s) = ~e [1 _ 7(s)J = ILe [1 + X (s) l = 
e 9 ses 1 - X (s)_ 

!Le 
-' 

s 
l 

_ X{s) • (30) 

By inserting (23), we get with (29) the surprisingly simple result 

-s;"[ 
'9{S) = 9' e • 1 - - X{s) • eS't = esT. 7'(s) (31) 

e s 1 - X (s) - 1 - X (s) e ' 

which corresponds in the original space to the relation 

g(t) = f(t +T) , 
e e for t > 0 • (32) 
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Fig. 2 - Interval densities observed under the same measuring conditions 
as in Fi g. l, but for an extended dead time. 
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For an extended dead time, therefore, the densities f(t) and g(t) are 
identical, apart from a shift by T in time. It is easy to see from (3) that 
this can be ge ne ra 1 ized for k ~. 1 to 

for t > 0 . 

Fig. 2 confirms graphically the relation (32). 

Therefore, instead of looking for the original of (30) or even for egk(t) -
which coul~ be done in the way already described in [5J -, a shortcut 
is now possible. Application of (33) leads with (20) immediate Iy to 

where 

Hence 

with 

k-1 J+ 1 
egk(t) = r (-1) ~ kC.{t) , 

I=k 1 

k = l, 2, ••. , 

·s. _ 
1 

= f (- l)k-1 

= fL'e 
(_1)k-l 

(k - 1) ! 

. e 
_·1 ~ L 

J (-s.f i 
2: 1 

i =k - 1 (j - k + 1)! ' 

This result clearly agrees with the previous formula (24) obtained in the 
more conve ntiona 1 direct way. 

(33) 

(34) 

(35) 

ln this context the question arises whether a relation like (32) will also 
exist for other experimental conditions (type of process and/or dead time). 
1 f we assume that 

g(t) = f (t +T ' ) , 

the n (5) a Ilows us to write 

9(S) = 7- [1 - 1(s)J = f(s) 
s1;' • e , 

(36) 



/ 

from which we deduce 

7(s) = ~.·/s 
--'-"'----;0 = 

S,..,..I 

where ~' 

t-<-/S + e v 

Il't' 
= f.L·e~ 

12 

(s+" ) 'l: 1 
çl+s.e J 

9 1 

, (37) 

However, this is just the transformed interval distribution (25) for an original 
Poisson process (with rate ,1> 1) after an extendEjd dead time '(; 1. This case is 
therefore the only instance where the functional equation (36) is fulfilled 
for a non-vaoishing dead time. In particular, no such relation between f 
and 9 exists for a non-extended dead time, a conclusion which is confirmed 
by comparing the explicit forms given in (11) and (16).-

4. Evaluation of some moments for f and 9 

and 

Let us denote the ordinary moments of t (of order r) by 

m (t) if t has the density f(t) 
r 

M (t) 
r 

.. t .. .. .. g(t) 

If we take into account that the integral transform of, say, f(t) can be written 
in the form 

2 3 
f(s) = l-s· m1(t)+~1· m2(t)-;I· m3(t)~ ••• , 

then a direct application of (5) leads to (since here 1-'-' = 1/m
1

) 

9 (,) = ,. m 1 [ 1 - (1 -,. m 1 + ': • m2 - ,; • m 3 :': ••• ) ] 

s = 1 --2 

By comparison with 

. .. , 

we conclude from (39) that g(t) is correctly normalized to unit y and that 

and 

(38) 

(39) 

(40) 
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Therefore, the variance of g(t} is given by 

(41) 

We now look separately at the moments mr for the case of a non-extended 
and an extended dead time as these are needed for the evaluation of the 
moments Mr of g(t} according to the re lations (40) and (41). 

For a non-extended dead time, with nf1 (t) given by (11), the moments are 

m,(t) ~ J.r· nf1 (t) dt ~J'Jtr.e-j'(t-1:) dt. 

o r 
By applying (13), this can be shown to be 

_ r! ~ ((;17) j 
m (t) - - L -- . 

r y r j=O j! 
(42) 

For an extended dead time, the moments have been determined previ~usly 
(see [SJ, eq. 32). For both cases, the first few are summarized in Ta'ble 1. 

n 
f(t) 

1 f (1 + x) 

2 2 
p2 (l + x + x /2) 

m
3 

(t) 
623 3" (1 + x + x /2 + x /6) 

f ,< "! '~" 
2 2 1 

cr-- f = m2-m 1 y2 

• y 
p 

e 
f(t) 

2 . y (y - x) 
1"2 
322 

y (2 y - 4 xy + x ) 
5)3 

1 
r 2 • y (y - 2x) 

Table 1: The first three moments for the ordinary interval 
density f(t) in the case of a non-extended (n) or ~ 
an extended (e) dead time, where x = fT and y = eV!.. • 

By virtue of (40) at'ld (41), the moments of the corresponding functions g(t} 
are easily obtained; they are listed in Table 2. 



2 
fT""' (t) 
,j 9 

1 
f". 

n 
g(t) 

2 
1 + x + x /2 

1 + x 

14 

2 3 
2 1 + x + x /2 + x /6 

f2 • 1 + x 

1 1 + x . 1 + x/4 
[ 

3 ] 
y2 3" (1:"x)2 

e 
9 (t) 

1 9' (y - x) 

2 2 2 2" (y - 2 xy + x /2) 
y 

'_1 • Y (y - 2 x) 
~2 

Table 2: The first two moments for the equilibrium interval 
density g(t), with abbreviations as in Table 1. 

5. The normalization of gkN 
Although (3) implies that if f(t) is normalized to unit y then so is 

gk(t), it is useful to check the normalization explicitly. 

co 

Let N = r gk(t) dt = Gk(C>C!) • 
~, 

o 

According to the Tauber theorem [6J, we are also allowed to write 

N = lim Gk(t) = 
t---::».<M 

which permits to control if N = 1, as we should expect. 

~, "Pf/' ,'11·, 

we get with (6) for "gk(s) 

n9
k(s) = P.n n[ f . e - s ï7 ] k-1 

s s + f 

(43) 

(44) 

(45) 
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and therefore by means of (43) 

[ 

-5"(" Jl 1 
.. 1. f(l -e )+5 
lm + () . 
. 0 5 5 f 57 

- 5 L "-' 1 ( _)2 0 b Il Since -e = sT-'2 si.. ~ •• 0, for 5-7, weo tainrea y 

= U. n 1 i m [1.
5 

. ~ . 5 T + 5] = . 1 + Y L = (46) 
n N \ 5 -70 5 + ? f-L n f 1 0 

b) Extended dead time -------------

From the previous results (28) and (30) we know that 

-...1 - X (5) 
f(s) = 

e 1 - X (5) 

and 
9(5) 

e 
fLe 1 = - 0 -::----:-:~ 1 - X (5) , 5 

where X(s) = _ ~ . e-(s+f)T 
5 

hence, from (6), 

--./ ( ) le - X(s) 1 + X(s) Il. [Jk-l[ ] 
e 9 k 5 = -5- 1 - X(s) 1 - X(s) 

[ J k-l 
__ ~Le - X (5) _ • 1 [_ X (s) ] k 

~ ~n - -5- [1 _ X (s)J k - -. es· X (s) 1 - X (5) 

However, since ~, 'Ptf" '''., 

,~~ [-, • X(,)] = lim ~ • e -(,+ ?)1] = 1 
_\,T 

o e 0 

and 

lim 
.9 ·e 

[ 

-(s +f rr ] 

we get indeed for the normalization by means of (43) 

N = lim e'9k(s) = 1 0 

e S~O 

lim(e-s'C') = 
(-Le 

s~O 

/-i.e 

(48) 

= 1 , 
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6. Total equilibrium density 

The total density D of an equilibrium process, defined by 

has a constant value which depends only on the (asymptotic) count rate. 
This is easil y shown as fo lIows: 

and therefore 

D(t) = rv o U(t), 

with ~ defined in (2) ° 
\ 

u­= +-
5 

(49) 

(50) 

As a further' check, let us control whether the explicit forms of gk(t) agree 
with this general result. 

For a non-extended dead time, we obtain from (45) 

~ 

= ~n [1 _ ' -SOl ~ [s>' .-Sèr -v 

2 
y • e 

D (5) = n9 k (5) n 
k=l 

5 + ÇJ _ k=O 5 + ~ 

!-1- [1 - f : : -pST J [1 1 -H] P-n (51) . n 
= - - . 

5 9 . e 5 

5 + fi 

Likewise; the case of an extended de'6d'nme gi'ves, by applying (47), 

.o(s) = ~1 .9k(s) = ~. [1 + 1 ~~(s)J ~o [1-:~sls) ] k 

f-Le 
5 

(52) 

ln both cases, (50) has thus been verified. 
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7. Expectation and variance of gk (t) 

As a consequence of the independent addition of the individual 
intervals, which is formally described by (3), we can write with respect 
to the arrivai time t

k 
of event k ~ 1 in an equilibrium process 

- for the expectation: 

- for the _variance: 

2 2 
V(t

k
) = (}g(t) + (k - 1) • () f (t) • 

By applying the values of the respective moments as given in Tables 1 
and 2, we find 

a) for a non-extended dead time: 

2 
E(t ) = .!. 1 + x + x /2 + ~ (1 + x) 

n k f' 1 + x y 

= ~ . _1_ [1 + x (2 + x) • (1 - _1 )] 
P 1+'x 2k ' 

n
V(t

k
) = -1-l1 +x

3 
. 1 +x/4 ] + (k -1) 1 

f2 3 (1+x)2 f2 

_ k 1 + x 1 + x/4 l 3 ] 
- f 2 3 k • (1 + x)2 

"#' wt" ..... , 

b) f~r an extended dead time: 

1 v k 
= f (y - x) + (k - 1) P = p (y - x/k) , 

_1_ y (y _ 2 x) + (k - 1) L (y - 2 x) 
f2 y2 
k 

= P 2 • Y (y - 2 x) . 

It can be readily verified that for both types of dead time the following 
re 1 a t ion s ho 1 d 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 
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- for k = 1: 

E(t
1
) = M

1
(t) , 

2 = (j (t) ; 
9 

- for k »1 : 

E(t
k
) ----?- k· m 1(t) , 

where the respective explicit expressions for the quantities on the right 
side of (59) and (60) can be found in Tables 1 and 2. 

We finally mention that 
2 

eV(tk) = k'evf(t) 

is rigorously true for any k~. 1 • 

There is no douht that the above results for the moments could also have 
been obtained either directly from the densities gk(t) and/or by 
differentiation of the transforms 9(S). However, as this risks to be 
a somewhat lengthy arithmetic procedure, it will be left here as an 
exercise to the reader who is interested in some practice. 

ln looking back upon the results given in this report, it is interesting 
to notice that in many cases the formulae for an extended dead time are 
rather simpler than those which correspond to the usually preferred 
non-extended type. This is not only contrary to a probably widespread 
opinion, but it may also be a useful hint for future developments. 

We are very grateful to P. Bréonce (BIPM) for performing the four 
experimental interval distributions shown in Figs. 1 and 2 by means of 
his ingenious "intervallomètre". 
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