Remarque sur la mesure de g par la méthode des deux stations

par P. Carré et F. Lesueur

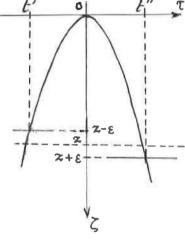
Nous envisageons le cas d'une station basse qui n'occupe pas exactement la même position à la montée et à la descente, ces deux positions étant distantes de 2 ε et de même pour la station haute. On se propose d'établir l'expression donnant g en fonction des durées mesurées (t_1 qui sépare les passages à la station basse et t_2 qui sépare les passages à la station haute) et des données géométriques (h, distance des stations à la montée et à la descente et ε).

En prenant l'origine des temps τ et des espaces ζ au sommet de la trajectoire on a :

$$\zeta = \frac{1}{2} g \tau^2$$
 soit $\tau = \pm \sqrt{\frac{2}{g}} \cdot \sqrt{\zeta}$

On a donc immédiatement la durée qui sépare les passages ascendant et descendant à une sation dédoublée :

$$t = t'' - t' = \left(+ \sqrt{\frac{2}{g}} \sqrt{z + \varepsilon} \right) - \left(- \sqrt{\frac{2}{g}} \sqrt{z - \varepsilon} \right) \xrightarrow{z - \varepsilon} t = \sqrt{\frac{2}{g}} \left(\sqrt{z + \varepsilon} + \sqrt{z - \varepsilon} \right).$$



On en tire :

$$gt^2 = 2 \left(\sqrt{z + \varepsilon} + \sqrt{z - \varepsilon} \right)^2 = 2 \left(2z + 2\sqrt{z^2 - \varepsilon^2} \right) = 4 \left(z + \sqrt{z^2 - \varepsilon^2} \right)$$
ou : $gt^2 - z = \sqrt{z^2 - \varepsilon^2}$

$$\frac{g^2t^4}{16} - \frac{gt^2}{2} \cdot z + z^2 = z^2 - \varepsilon^2$$

soit:
$$gt^2 = 8 z - \frac{16 \epsilon^2}{gt^2}$$
.

On aura donc pour les stations basse et haute, respectivement :

$$gt_1^2 = 8 z_1 - \frac{16 \varepsilon^2}{gt_1^2}$$

$$gt_2^2 = 8 z_2 - \frac{16 \varepsilon^2}{gt_2^2}$$
.

Par différence, on obtient :

$$g(t_1^2 - t_2^2) = 8(z_1 - z_2) + \frac{16 \varepsilon^2}{g}(\frac{1}{t_2^2} - \frac{1}{t_1^2})$$

et comme $z_1 - z_2 = h$:

$$g = \frac{8h}{t_1^2 - t_2^2} \left(1 + \frac{2\epsilon^2}{gh} \left(\frac{1}{t_2^2} - \frac{1}{t_1^2}\right)\right)$$

On reconnaît, dans cette formule rigoureuse, le terme principal habituel:

$$g_0 = \frac{8 h}{t_1^2 - t_2^2}$$

et un terme correctif, dans lequel figure g. En confondant g et g_{O} , ce terme s'écrit simplement :

$$\Delta g = \frac{2 e^2}{h} \left(\frac{1}{t_2^2} - \frac{1}{t_1^2} \right).$$

Application au gravimètre de l'I.M.G.C., Turin

Soit p le nombre de "franges" comptées à la montée (et décomptées à la descente), alors

$$h = p \cdot \frac{\lambda}{2} .$$

Soit d'autre part $\epsilon=\frac{1}{4}$. $\frac{\lambda}{2}$ (une demi-frange de "jeu" entre le comptage et le décomptage). On a ainsi :

$$\frac{2 \varepsilon^2}{h} = \frac{\lambda}{16 p}$$

Avec $\lambda = 633 \times 10^{-9}$ m, $p = 10^6$ et z_2 compris entre ε et $\varepsilon + \frac{\lambda}{2}$ soit $\frac{1}{4} \cdot \frac{\lambda}{2}$ et $\frac{5}{4} \cdot \frac{\lambda}{2}$ (d'où on déduit que t_2 est compris entre 180 x 10^{-6} s et 565 x 10^{-6} s), le terme correctif $\frac{2 \varepsilon^2}{h} \cdot \frac{1}{t_2^2}$ est compris entre 1,23 x 10^{-6} ms⁻² et 0,12 x 10^{-6} ms⁻².

Le terme $\frac{2 \ \epsilon^2}{h}$. $\frac{1}{t_1^2}$, de l'ordre de $10^{-13} \ \mathrm{ms^{-2}}$, est absolument négligeable.

Finalement, avec la valeur ci-dessus de ϵ , on calculera g par la relation :

$$g = \frac{8h}{t_1^2 - t_2^2} + \frac{\lambda}{16pt_2^2} = \lambda \left[\frac{4p}{t_1^2 - t_2^2} + \frac{1}{16pt_2^2} \right].$$

2 octobre 1974