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1. Introduction 

Rapport BI P M-74/1 

The spectral distrJbution 'of partides emitted in a nuclear reaction is 
usually measured by means of an analysis of the corresponding pulse heights. 
The spectrum available for study then consists of a set of numbers which indicate 
'th:e contents of the kicksorter channels. As a result of .the random nature of 
nuclear reactions, these numbers are always more or less disturbed by statistical 
fi uc tuations. 

Theproblem of "smoothing" or "filtering" empirical data therefore (irises naturally 
whenever' a quantitative' 'ailalysis of the spectrum is required, as will be the case 
for a precise location of the peaks (calibration) or for area determi~ati6ns 
(intensity). : '. -

The shape of such a spectrum is in general too complicated to be described 
qnalytically, although attempts with multiple superpositions of "standard spectra" 
(with adjustable parameters for location and intensity) have been made repeatedly. 
But even if this approach is chosen, and perhaps especially inthis case; the 
previ~us reduction of statistical scatter is often a necessity. ' 

.;; '! 

Under these circur;nstances, a fairly obvious attempt to obtain Ci~moothe d 'spectrum 
is to make a Ilocal" 'least-squares adjustrrie nt, and this technique has bee n 
described in detail by Savitzky and Golay [1 J ' a paper which is still quoted 
as the basic reference and apparently much usedby nuclear chemists. The . approach 
has bee n known long before, however, and as an example for an earlier , 
referé nce [2]: mlghf bequoted • . '. " . • • . . 

ln the first part of the present report, we shall give a short summary of the 
underlying theory although this is just a simple application for the well-known 

. ge ne ral least -:-square s te chnique . Howe ve r, it will g ive us the oppo rtunity 
ta correct sorne of the more d isturbing misprints found in [1] • Today-the main 
inte re st in [ lJ l ie s obviously in its e xte nsive tabul a t ion of the factors ·by which 
the originar data bave to be multipli e d (for details see later). It May be somewhat 
surpdsing, 'therefore, that quite a large percentage of the listed coefficients 
have turned out to be erroneous whe.n the tedious numeric.al values were 
recalcul ated • . 

Finally, some remad<.s .on the quality of thi.s type of adjustment will be added 
as far as the influence on the moments is concerned, and theeventual 
useful ness of we ights is also briefly discussed. 
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2. Sketch of the least-squares approach 

The empirical data are supposed to be available in the form of pairs 
(x., y,), where x. is the channel number and y. its content (equally spaced 

1 1 1 . 1 

observations), As the index i runs from 1 to, say 512 or more (depending on 
the type of analyzer used), the "true" shape of the spectrum in a limited regÎon ' 
of n = 2m + 1 channels (j.e. the central one and m neighbours on each side) 
may be reasonably supposed to be smooth enough to be represented by a poly­
nomial of order p (see Fig. 1) 

f (x . ) = 
p 1 

2 
P. + p, l' x +!-, • x . + ••• 

P,O p, i p,2 , 

= ~ A ,k 
k x. p, 1 

k=o 

where p <.. 2m. 

+ A • x~ 
p, p , 

(The case p = 2m corresponds to a problem of interpolation, whereas p,> 2m 
has no solution). 

The first derivative of (1) with respect to x is obviously 

k-l 

(1) 

fi {x.} 
P , 

= ~ 
L k ' A • x. 

p, k 1 
(2) 

k=l 

ln particular, we observe that for x. = 0, which will later be chosen as the , 
" cen tral" point to be adjusted, the II smoo thed" value is simply given by 

f {o} = A. , 
p p,o 

for any p , (li) 

because it lies on the polynomial (1). Likewise, the adjusted first derivative is 

fi (o) = A • 
p p, l 

Similar formulae exist for the higher derivatives, but they are omitted here 
as only the first derivative is needed for the exact peak location. 

(21) 

The best fit of the polynomial f {x,} to the n measured values (x., y.) by the 
p , 1 1 

method of least squares leads to the conditions 

;;' ....!!..I ' 2 
d - ~ ~ y. - f (x .)~ = J, 

.A· p,ki=ll' p ' J 
k=O, l, .", p • 
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Fig. 1 - Schematic plot for the local fit of a polynomial f (x) 
to the measurements around xi (for m = 3). P 
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Fig. 2 - G raph ical plot of the first non-van ish i ng mome nt M4 
of the convolution function gi (for rectangular and 
triangular weights, see text) 
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If the n chonnels ore locoted symmetricolly oround 0 centrol chonnel 
this corresponds to the p+l equotions 

x . , 
1 

~ { y,+, - f (x.+.) l k = J 
j=-m l' Pl' 'j xi+ j , (3 ) 

since 
() k 

f (x) = x 
d Ap, k P 

These ore the well-known normol equotions which, when written in full, are 

A A 
... ... 

P. [x2J + + A exP] [ 1 "\ n + 1 x 1 + = 
P, 1 p,2 · .. Y.J p,o ~ .. p,p 

A :-x ï + A 
,.. 2.., i 3- + - +1-

[xyJ LX j + ~ lX J · .. + A L xP J = p,o L_ . p, l p,2 p,p 

- 2.., 
A [ x

3J + A [x4 j + +p, [xp+2 ] = [x2yJ ( (4) /li Ix J+ 
P, 1 · .. p,o 1- p,2 

p, p . 1 

A exp; + A 1 [xp+l] + 
p,o J p, 

wnere for instance 

m 2 
[ x2y"'1J :;z ~ X • Y 

. "- i+', i+', 
,=-m 

With the abbreviotions 

and (5) 

this can olso be expressed in shorter form as 

~ S 'A = F k~ r+k p, k r' 
r=O,l, .•• ,p, (6) 

~hic.h corres.ponds. (aport From a misprint) to equation Yb in [~ j . . . , , " 

:r~he 'ab:s'c::'i ~sa ' x: sta.n~s fpr. the :'G hqQ,ne 1. ny'~b~r 'and i ~ ';t~etefç)[~·( .a (po~itive) intege r. 
1 1 l ,J, l, ~~ 11J,. 1,1. . ",, : ' v ~ \_ 1., of '. 

As we can always take the central channel x . as the ' o 'rig f.i{t\~e : q:Cldï1~;r'f.y '>'t:-i i' 
1 • ., .1, 1"1 

may now be identified with j. Then 

- fi \ S, = i j' = r; ~ j' 

j= -m 1 
1..... 0 

for r even (f 0) 
. (7) 

Il r odd , 
whereas S = 2m + 1 • 

o 



5 

This, in turn, resul ts in a spi itting of the system of normal equations (6) into 
two separate groups which are 

Cl 

~o 52 (k+r) 'Ap,2k = F2r 

and 
Q 

~o 52 (k+r)+l 'P-' p ,2k+l = F2r+1 ' 

Wlt r rangmg ln ot cases rom .J to '. == :..l 2 .J' w ere LLY jJ stan s 

(8a) 

(8b) 

. h .. b h f" Q i, r P..2J.~1 h I""'r -:., d 

as usual for the largest integer below y, Ac cording y, ail the "even" coefficients 
A , A 2' A 4"" appear only in the system (8a), whereas the "odd" 

p,o p, p, 
coefficients P. l' A 3' A 5"" are restricted to the set of equations (8b). p, p, p, 

It is a peculiarity of the system (8) that, as a result of (7), augmenting p by 
one unit adds only one new equation to either (8a) or (8b), while the other set 
remains unchanged f Therefore 

P. k = A +1 k ' P, p, 
(9) 

provided that k and p have the same parity (i ,e. are both even or both odd) T 

ln this case, also the corresponding coefficients {)( (or~) and the normalizations 
i'l (see later for the definitions) are obviously the same, 

The determination of the coefficients A k is straightforward. Thus for p = 3, 
for example, we get from (8a) P, 

A3,o ' 52 + A3, 2 ' 54 = F
2 

hence 54 F 0 - 52 F 2 
A = ( D) 

3,0 2 
, 

50 54 .. 52 

and likewise from (8b) 

A3,l'52 +A3,3'54 
= F

l 

A3,1 '54 +A3 ,3 '56 
= F3 , 

hence 5
6

F
l

-S
4

F
3 

A3 1 = ( 11) 2 , 
52 56 - 54 
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The quantities S depend also on m, as is evident from their definition (5). 
A short table of rtheir numerical values is given in Table p.l of the Appendix. 
It is sufficient for determining A and A 1 for polynomials of degree p = 2 

P,O p, 
to 5 and up to n:::: 11 points. These explicit results of very elementarYI but 
quite te dlous calculations are only given to dllow easy checking of those 
coe ff ic ients ca: or ~ (se e late r) which have been found to be ~rroneous in the more 
exte nde d tabul ation in [1] . 

If we continue our example, for instance with m = 4, and restrict ourselves 
to the evaluation of fJ.'

3 
,the quantities needed further are F and F2' for which 

,0 0 

we get (with x, = 0) from (5) , 
F = (_4)o.y. +(_3)0.y. + ... +4°'Y',+4 
o ,-4 ,-3 

and 
F
2 

= ( ... 4)2. y. + (_3)2. y. + 
,-4 ,-3 ... 

which may also be written as 

+ + 

and 
D + + 22 • D + + 32 • D + + 42 • D + 

1 2 3 4 1 

+ 
where D. = y.+ , + y .. 

l '1 '-1 

Hence, the numerator in (10) is 

+ + + + = 708 Yi + 648 Dl + 468 D2 + 168 D3 - 252 D 4 1 

where the corresponding values for Sr have been taken from Table P..l. 5ince 
the de nom inator of (10) i s 

2 
50 S 4 - 52 = 2 772 1 

dropping of the common factor 12 finally leads to 

1 + + + + 
A3 ,0 = 231 (59 Yi + 54 Dl + 39 D 2 + 14 D 3 - 21 D 4) • 

(12 ) 

By generalizing the explicit calculations made in this example it is easy to see 
that the coefficients F , originally defined by (5), can also be written as 

r 



whereas 
F, 
' 0 

with 
D± _ + 

"1 y"+" y." 1 1 - 1-1 

7 

!-. 

for r e ve n (e xc e pt 0) 

(13 ) 

Il r ' odd 

(14) 

It is practical to introduce the following abbreviations for certain combinations 
of the factors $ which appear rep.ecitedly in the evaluation of the coefficients 
A" r , '" ' . . .... 

p, k" . 

T
2 

2 
T

6 
2 = $0$4-$2 = $4$8-$6 , , 

T
4 

2 
T7 $4$10-$6$8 (15) = $2 $6 - $ 4 = , , 

T
5 

= 52 58 - 54 56 l- = 56S1'O -S~ .. 
8 

These 'coefficients are 
the formulae for P, 

p,o 

listed in Table /l,2 of the Appendix" With their help, 
and A l' as they result from the n~rmal equations (8)', 

p, 
con now be simpl ified to 

- fo r p = 2 0 r 3: 

,6. 
p,o 

A 
p, 1 

= 

= 

S 4 F 0 - S2 .F2 
T
2 

S6 ~ 1~S 4 F3 
T

4 

- fo r p = 4 0 r 5: 

ft. 
p,o 

/1.. 
1 • p, 1 

T6Fo-T5F2+T4F4 
= 

T 6 S 0 - T 5 $2 + T 4 54 

;-. 

... " 1' 1 

l, 

, ,. . , 

It is now e,asy. to realize th.at, in the g~,nera"f case, the result for A :wiU ' .. 
always be of the form ' p,o . 

(10') 

(11 ') 

;-

(16 ) 

(17) 

1 m_ + 
A = -N ( v: y . +~ CX " D.) (18) 

p,o 0 0 1 j= l 1 1 
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and for P. 1 a similar reasoning leads to the expression 
p, 

1 m _ 
Po 1 = N 2 ~ . D. 

p, 1 j= 1 1 1 
( 19) 

The coefficients x. and the normcilization factors N (or the corresponding 
1 0 

quantities ~. and N 1 for evaluating the derivdtives) are given in Tables 1 
1 . 

and 2 for p up to 6 and m not excëeding 1 n 4 1-\ more extended tabulation 
(up to m = 12) can be found in [1J ',' but it should be used with caution. 

Table 1 - Coefficients needed for evaluating the smoothed value f (o) = A 
p p,o 

For p = 2 or 3: 

m 

2 

3 

4 

5 

6 

7 

N 
o 

35 

21 

231 

429 

143 

105 

8 323 

9 2 261 

10 1 3 059 

m 0(5 

5 -36 

6 

7 

8 

o 
42 

18 

9 144 

10 1 204 

CX o 

17 

7 

59 

89 

25 

167 

43 

269 

329 

-11 

-13 

7 

89 

149 

(with 6qual weights) 

0\ 1 

12 

6 

54 

84 

24 

162 

42 

264 

324 

01. 
7 

-78 

-6 

24 

84 

0( 2 

-3 

3 

39 

69 

21 

147 

39 

249 

309 

-21 

-51 

9 

r:l.. 
3 

-2 

14 

44 

16 

122 

34 

224 

284 

::;( 
9 

-136 

-76 

-21 

9 

9 

87 

27 

189 

249 

-171 
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Table 1 (cont'd) 

For p = 4 or 5: 

m N 1 
0(0 CXl 0: 2 0( 3 eX 

0 
1 

'4 

3 231 
1 

131 75 -30 5 

4 429 f 179 135 30 ~55· 15 

5 429 143 120 60 -10 -45 

6 2 431 677 600 390 110 -135* 

,~ : 'i ", 7 46 189 1 11 063 , 1 Q ..1.25 7500 3 755 -165 
"': . ..! B-, 4. 1-.99, 1 8~3 ~~S 660 415 135 -' --': , 

:"'-. ;- ~:. 1 ; ~ :-~ ~. t St .. ~:. 7429 1 . 1 39 .. 3 1 ~,~,O 1 110 790 405 
: ~ : ' j ;" 

la' 2'6001'5 t 4:4 003' :42 '120 36 660 28 190 17655 

'. l f .- ( , ",' • ri.'. 
,~~ r'- 1 
.', . , ~ . . 

m 1 C)(s !:X 
't~; ... !J .. c't... 7 0( 8 0( 9 0( 1 0 

5 18 

6 -198 110 

7 --2 937- - .... 2 860 .. 2.145 

8 -117 -260 -195 195 

9 18 -290 -420 -255 340 

10 6378 \:' -3 940 -11 220 -13 005 ~6 460 11 628 

'.,., 

* Corrects the corresponding value given in [1] • 
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Table t (cont'd) 

For p = 6** 

m Nt 'Xo 0<.1 0\2 0( 3 0(4 

4 1 287 797 392 -196 56 -7 

5 2 431 1 157 784 28 -308 161 

6 46 189 18 063 14 000 4550 -3 500 -3 605 

7 12 597 4 199 3 500 1 750 -140 -1 085 

8 96577 28 109 24 500 15 050 3 500 -5 215 

9 37 145 9605 8 624 5 978 2 492 -679 

10 334 305 77 821 71 344 53 508 28 812 3 801 

m 0<5 a.. 
6 0< 7 :X 8 '::1.. 9 'x 10 

5 -28 

6 3 388 -770 

7 -476 910 -260 

8 -6 916 -910 6 500 -2 275 

9 -2 380 -1 918 344 2 261 -952 

10 -14 364 -19 908 -11016 7 021 18 088 -9 044 

lU These values are not tabulated in rl1 . _ .J 
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Table 2 - Coefficients needed for evaluating the smoothed derivative 

fi (o) = Po 1 (with equal weights) 
p P, 

For p =2: 

m N 1 ~1 ~2 P3 ~4 
---

2 10 2 

3 28 2 3 

4 60 2 3 4 

5 110 2 3 4 

6 182 2 3 4 

7 280 2 3 4 

8 408 2 3 4 

9 570 2 3 4 

10 770 2 3 4 

m ~5 ~6 ~7 ~8 ~9 ~10 

5 5 

6 5 6 

7 5 6 7 

8 5 6 7 8 

9 5 6 7 8 9 

10 5 6 7 8 9 10 
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Table 2 (cont'd) 

For p = 3 or 4: 

rn N 1 ~1 ~2 ~3 ~4 

2x 12 8 -1 

3 252 58 67 -22 

4 1 188 126* 193 142 -86 

5 5 148 296 503 532 294 

6 24 024 832 1 489 1 796 1 578 

7 334 152 75J6 13 843 17842 18 334 

8 23 256 358 673 902 1 002 

9 255 816 2 816 5 363 7372* 8574 

10 3 634 092 2? 592 56 881 79 564* 95 338 

rn ~5 ~6 ~7 ~8 ~9 ~10 

5 -300 

6 660 -1 133 

7 14 150 4 121 -12 922 

8 930 643 98 -748 

9 8 700 7 481 4648 -68 -6 936 

10 101 900 96 947 78 176 43 284 -10 032 -84 075 

x The coefficients given in this line are only rneaningful for an adjustrnent 
with the lowe r val ue of p. 

* Corrects the corresponding val ue given in [1] • 
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for p=4or5: 

m N
2 Yo YI Y2 Y3 Y4 

1 

3 132* 
1 

- 70* - 19* 67* - 13* 

4 1 716* - 370* - 211 * 151* 371 * - 126* 

5 1 716* 1 - 190* - 136* 1* 146* 174* 

6 58 344* ! - 3 780* - 3 016* - 971 * 1 614* 3 504* 

7 108 536* 1- 45 780* - 38 859* - 19 751 * 6 579* 31 856* 

8 100776* 1 _2820* - 2 489* - 1 557* - 207* 1 256* 

9 1 961 256* 1- 38 940* - 35 288* - 24 867* - 9 282* 8 792* 

10 980628* 1-14322* - 13 224* - 10 061 * - 5 226* 626* 

m Y5 Y6 Y7 Y8 Y9 Yl0 

5 - 90* 

6 2 970* -2211* 

7 44 495* 29 601 * - 31 031 * 

8 2 405* 2 691* 1 443* - 2 132* 

9 25 610* 36 357* 35 148* 15 028* - 32 028* 

10 6 578* 11451* 13 804* Il 934* 3 876* - 12 597'~ 

* Corrects the corresponding val ue given in [1] . 
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3. A simple check 

ln view of the real danger of errors in the lengthy numerical calculations, 
any control for the coefficients 0(, ~ and N would be very welcome, even 
if this were only a necessary, but not a sufficient condition for the values to be 
correc t. 

As a matter of fact, such a control can be easily derived by assuming a particular 
distribution of the experimental measurements y .• For 

1 

- .q y.+. - l , 
1 1 

with q ~ p , 

the adjusted polynomial (1) will only consist of one term, thus 

f. = c-
à . 

p, j l, q 

Inserting (20) into (14) gives 

1
2 .q 

for q even 
D~ = J 1 

1 lo Il q odd , 

{: 
for q even 

but D~ = 
1 .q Il q odd. 1 

By applying (21), we get therefore in particular 

- for 9 = 0, from (18) 

1 
/\ 1 (Co( .00 + 2 = = 

p,o N 0 
0 

and hence for the normal ization 
m 

N = ex +2 ~ cx. i 
0 0 j= 1 1 

- for 9 = l, From ( 19) 
m 

~ . 1 1. = 1 = 22: P, 1 N I 
•• 1 

j=l 1 

and hence for the normal ization 
m 

NI = 2 ~ i ·~ . . 
j= 1 1 

m 
~ d. .0) L .' 1 , 
j=l 1 

(2J) 

(21) 

(22) 

(23) 



11 

Similor checks obviously exist for the coefficients used in determining the 
high e r derivotlves of f (x), which have not been treoted here but con be found 

[ 
- p 

in 1 J . YI/e nbte, howe ve r, that what these authors coll h/.pqll would corr~spond 
to our q! ' 1. , 

p,q 

Further checks for /\ will result from a discussion of the moments (section 5). 
p,o 

4. Smoothing and foldi~ 

The individuol odiustment of a polynomial to eoch measured point (and its 
neighbours) for determining the IIsmoothed" value as weil os the corresponding 
procedure for obtoining the derivative con 0150 be considered From the point of 
view of the folding of two functions. /\5 a matter of fact, the relation (18) may 
be written in the equivalent form 

m m 
f . - f (x.) = ;:- Yi + i . 9 i = ~ y..' g . 1 

j P 1 j=-m j=-m ,-/ 1 

if the discrete function g, is identified with 
1 

g. =r (XI,I/N , for Iii ~ m • 
1 1 0 

The values of g, are seen to be essentially identical with our tabulated 
1 

(24) 

(25) 

coefficients ex:.,. Therefore, such a set of values can be thought of as representing 
1 

some kind of discrete weighing function with which the observed data have to be 
convoluted in order to obtain the smoothed values, or in the usual shorthand 
notation (see e, g, [3] ' p. 37 ff.) 

f. = y. ® g. = y, * g. . 
, 1 l , 1 

(24a) 

Similarly, the (smoothed) first derivative, according to (19), can now be written os 

or 

with 

m 
f! _ fi (x.) = ~ • h ~ y,+, . 

1 P 1 j=-m 1 1 1 

f! = y. ® h. = - y, ." h. , 
, " " 

- ~lil/Nl 
h , __ ) 0 

1 1 ~/NI 

for 

Il 

Il 

m 
= -~ y ·h 

.~ i-i j 
I--m 

1 (26) 

(260) 

< 0 

= 0 

) 0 (27) 
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The discrete function h. pleys a role similar to g. above, but is antisymmetrical. 
1 1 

We note, however, that neither g. nor h. can be taken as probability functions 
1 1 

since they may assume negative values. 

ln the language of electrical network theory, the function g. would be called 
1 

a digital "filter". /\5 its function in the smoothing process is obviously to reduce 
the "noiselt caused by the statistical fluctuations, it should act as a low-pass 
filter because the noise has a "white" frequency spectrum. This means that, since 
the different channels are uncorrelated, its density extends with an approximately 
constant value From zero to high frequencies (limited by the reciprocal of the 
channe 1 width). 

However, this aspect of the smoothing problem will not be discussed here further 
as it has been treated repeatedly. Two examples of frequency spectra of such 
fi 1 te rs are 9 i ve n in [4] • 

Let us finally deduce (although by somewhat heuristic arguments, as will become 
more obvious later) an interesting, simple relation between the functions g. and h .• 
If the Laplace transform, defined by 1 1 

i. ~ y., St) = E(e -si) 
l 1 

co . 
x 2: y .• e -5 1 == Y (5) , 

j= _\;)01 

is applied to (24) and (26), we get 

and 

-y (5) • 9 (5) L {fi} = 

;t{fj-l -v "-./ 

= - y (5) • h (5) 

However, since L { fif =f(5) , 
: J -v 

but J) f! ~ == s' f (s) , 
1. Il 

we see by comparing (24 1
) with (26 1

) that 

""'J "...,1 

h (5) = - 5 • 9 (5) , 

which corresponds for the original weighing functions to the relation 

h. == - g! • 
1 1 

The relation (29) could be used for checking the coefficients 0(. and ~. , but 
1 1 

(28) 

(24 1
) 

(26 1
) 

(29) 

in general this will first require sorne interpolation formula, as the function g. 
1 

is discrete and therefore cannot be differentiated directly. However, g! in (29) 
1 

may be identified with the derivative of the corresponding interpolation 
polynomial of degree 2m. 
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Nevertheless, in some simple cases a direct comparison is still possible. Thus, 
for p = 2 and, say m = 5, we get the following values (normalization neglected): 

_i~ 
g , rv 1-36 

1 

-4 -3 -2 - 1 0 2 3 4 5 

9 44 69 84 89 84 69 44 9 -36 

(g'+l-g .),"" 45 
1 1 

35 25 15 5 -5 -15 -25 -35 -45 

g ! '"V 

1 
(50) 40 30 20 10 o -10 -20 -30 -40 (-50) 

h "''' -5 -4 -3 -2 -1 o 2 3 4 5 0 

1 

The values g . have been taken from Table 1 (since g . --.lo( Jo As the quantity 
1 1 1 

g'+l-g . is manifestly linear in i, the derivative g! at the values i can be guessed 
1 1 1 

readily. A comparison with the ~IS from Table 2 then confirms the proportionality 
impl ied by (29). 

5. f\Aoments, distortions and controls 

A relation between the moments of g. and h. con be obtained as follows • 
.-v 1 1 

If g(5) is the Laplace transfo rm of 9
1
, then the moments of order k of the function 

g . are known to be 9 i v9n by 

1 Mk(g) .. E(jk) = (-llko g (k)/s=o • 

k 
W 'lth ~(k) _ d ~ ...... ()~ 9 ~-kg5 . 

ds 

-.; """ 
Since h(s) = -s 0 g(s) , we get similarly for h . 

l'A (h) = (_1)k+l 0 (s og)(k) 1 1 
k s~ 

But for the n-th derivative of a product of two functions ft. and B, Leibnitz's 
rule states that 

(P.o B)(n) = i (~) A(n~j) 'B(j) , 
j=J 1 

with A (0) ,; A, 8(0) = B • 

(30) 

(31) 

(32) 
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ln our case we therefore obtain 

( ~)(k) ",(k)+k ~,(k-1) 
S'g =S'g 'g , 

because 
(o) (1) 

s = sand s = 1, 

but s (2) = ••• = s (k) = 0 • 

This then yields for the moment of order k of h . 
1 

f'l (h) = (_1)k+ 1 • k • g(k-1)! _ = k'~,t\ (g). 
k ,s-o k-l 

1 n particular 1 for k=l we therefore obta in 

Ml (h) = J\~o (g) = l , 

in accordance with (22) and (23). 

As a result of the symmetry of the functions g. and the antisymmetry of h., 
1 1 

we have obviously for the moments (k =0,1,2, ••• ) 

M
2k

+1 (g) = 0 

M
2k

(h) = 0 

for k odd 

Il k eve n. 

By looking at the relation (34), one might now fe e l tempted to conclude that 
ail moments (for k> l, say) of g. and h. van ish. However, this is c e rta inly 

1 1 

(33) 

(34) 

(35) 

(36) 

not possible, since the requirement for 011 mome nts M2k (g) to disappear corresponds 
to infinitely many equations, whereas the number of cond it ions which can be 
fulfilled by the m+l values 0(. is necessarily limited. The origin of this 

.. 1 
discrepancy lies in our previous (and perhaps somewhat hast y) identification of 
the sequence ex.. with the interpolating polynomial g. (and similarly for h,). 

1 1 1 
A closer look at the situation reveals that - in addition to (35) - only the following 
moments Can be used for checking the coefficients a( . and ~ . (when p does not 
exceed 5) 1 1 

- fo r r-.j.: 
--~I 

M2 k (g) = 0 for 1 ~ k < ri E2i l] 
" LL 2 J ' 

thus 
m .2 :> 1 v,. 

j-:: 1 1 
= 0 for p ~ 2 (37} 

m 
.4 2 1 C( . 

j=l 1 
and = a Il P ~ 4 • 



- for ~ . : 
--1 

M2k+1(h) 

thus 
m 

.3 ~ 

~ 1 1 

m 
.5 ~ ~ 1 • 

j=l 1 
and 

= 0 

= 0 

= 0 

15 

!""r' / 1-' 
for 1 ~ k ~ LLP 2 JJ ' 

for p ~ 3 

.. p ~ 5 . 

(38) 

The smoothing of the original data is a process which inevitably introduces 
distortions, some of which are "wanted ll whereas others will be considered as 
lIunwantedli. ft.s a matter of fact, it is usually most difficult, ïf not impossible, 
to tell in advance how a favourable balance between these two possibil ities can 
be achieved. As the judgment is usually based on visual inspection of the smoothed 
data, even the separation between the we\come and the undesirable effects 
is obviously subjective. 

Several attempts to improve this situation have been made. In particular, it would 
be desirable to have available a simple rule for choosing the degree p of the 
fitting polynomial and the number n = 2m + l of points to be selected. Thus, for 
p = 3 a special study has been made [5 J where five different methods for choosing 
the best value of m and four criteria j'or f~sl'ing the e ff.sct ; v~ n css or srnoo ;-:" ng 
are discussed. However, no definite policy can be deduced from this, apart, 
of course, from the well-known and rather obvious rule that the amount of 
smoothing increases with m and decreases with p. 

A more detailed insight into the mechanism of smoothing is provided by a look 
at the integral transforms of y. and g .• The high-frequency contributions of the 

....., 1 1 
experimental spectrum f . ( iJ), withV' = s/(2fiï i), which are supposed to be due 

1 
to noise, are best eliminated by choosing values of p and m for which the 
corresponding low-pass filter g.( v) rejects the unwanted high frequencies. 

1 
However, core must be taken so as to not seriously distort the low-frequency 
contributions which are characteristic of the IIsignal ll

, i.e. of the true spectrum 
shape. These questions have been discussed for example in [4] and [6] • 

ft.nother general approach which may be useful for a rough estimate of the 
distortions brought in by the fitting procedure can be based on the moments. 
The fact expressed by (24a), namely that the smoothed curve f. can be considered 

1 

as the result of folding the original measurements y. with a certain weighing 
1 

function g., leads readily to a simple relation between the corresponding moments. 
1 

The moments IVlk(f) of the function f. = y. * g. can be expressed in terms of the 
1 1 1 

moments N\ .(y) and [I.\(g) of the convolution factors by means of (see [3J, p. 54) 
1 1 

(39) 
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Since according to (35) and (36) 

M (g) = 1 
o 

and M
2k

+
1 

(g) = :> , 

the relation (39) reduces to 

k k 
Mk(f) = (0) Mk(y)' Mo{g) + ~ (2;) Mk_2j (y)' M2 ;(g) , 

1 

rrk+111 
with 1 ~ ; ~ l ' 2 l ' • 

L.L JJ 

When this is combined with (37) we arrive at 

with 

Therefore 

if 

( 

k < J p+1 
'" ) p 

for p even 
Il p odd , 

i.e. these moments of the original curve are not influenced by the fitting 
procedure. The first change occurs for the moment of order 

k' = 2 il ~+31l 
LL 2 J.J 

and amounts, according to (40), to 

k ' 
Mk,(f) - Mk,(y) = (k

'
) Mo (y) • Mk,{g) = Mk,{g) . 

It is a fairly obvious condition for any acceptable fîtting procedure to change 
neither the total number of observed events nor the position or the "width" of 
a spectral line. This corresponds to demanding that 

M (g) = 1 
o 

A look at (35), (36) and (37) shows that this is always the case provided that 
P.? ... 2. As for the moments of higher order, the situation is less clear. If we 
demand os little change os possible for them too, the best choice would be 
a high p (practically limited by the tables available for the corresponding 
coeffic ie nts 0< . a nd ~.) a nd the lowe st compatible value of m, which is 

(40) 

(41) 

(42) 

__ _J 1 1 

m = II p;3 . O n the other ha nd, this will clearly also diminish the smoothing 

affe ct 50 t a t in rea lity a compromise ha s to be mode. The limiting case g. = .~. 
1 1,0 

is of no practical interest as it corresponds to a pure interpolation, where 
always f (x.) = y., thus giving no smoothing at ail. 

plI 
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/Jo. plot of some numerical results for the first non - vanishing moment of the 
weighing function gj is given in Fig. 2. It can be seen that its absolute value 
increases with m, indicating thereby a stronger distortion. 

6. Additional remarks 

If the process of smoothing were iterated a large number of times, the resulting 
set of adiusted values would tend towards a least-squares polynomial of degree p 
for the entire range of the measured values. This would obviously only be the 
case if "off-center" formulae had been used for the m values at the beginning 
and at the end of the interval, as it is customary in the related field of interpolation 
(see e.g. [7J). For the sake of simplicity, howe ve r, it will be preferred in 
most practical applications to renounce this re f inement and to use, for instance, 
the original border values instead of the adjusted ones. 

ln any case, this limiting behaviour obviously restricts the usefulness of such 
repeated convo 1 utions. Whereas a po 1 ynom ial fit of degree p may be reasonable 
for n = 2m+l points, this procedure will become doubtful for a much more 
extended range. Furthermore, we arrive at the (somewhat embarrassing) conclusion 
that the limiting polynomial (of degree p) obtained by repeating the convolution 
with n points each time is not independent of n (or m). This is a direct 
consequence of the fact that for a given p 

(43) 

1 ndeed, a simple example with, say ml = m
2 

= 2 and p = 2 or 3, al ready shows 

that the coefficients for m
1

+m
2 

= 4, when determined by a self-convolution of g~2), 
i.e. with m = 2, do not agree with the values listed in Table 1 for m = 4. 
Putting for brevity 

(m 1 2=2) 
g.' = g. 

1 1 
and 

equation (20) tells us to form 

2 
G -""Çg • 

• - L...- "+k gk ' 
1 k=-2 1 

which results in 

G = 9 -2 g .. 2 + 9 -1 g-1 + 9 go + 9 1 91 + g2 g..., , 
0 . 0 ~ 

C = g-1 g-2 + go g-l + g1 9 . . + g2 9 1 1 o .. . 

G = go g-2 + g1 g-1 + g2 go 2 

G = g1 9 + g2 g - I 3 -2 

G4 
= g2 g-2 , 
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or with (21) and the numerical val ues from Table 1 (for m:r::2 and p=2 or 3): 

whereas for m=4 

35
2 

• G = 595 , ex o 
= 59 

0 

35
2 

• G = 336 C( 1 = 54 
1 

2 
42 39 35 • G

2 
= ~2 = 

35
2 

• G = -72 0:. = 14 
3 3 

35
2 

. G = 9 'èl( = -21 
4 4 

As the resulting weighing function G. is clearly quite different from the values g . 
1 1 

obtained directly for m=4, it follows that an adjustment with a higher value of m 
cannot simply be - replC1ced by the combined effect of simpler fits such that 

='" m L m. 
1 

i 

Finally, we should mention that the polynomial fits treated in this report could 
also have been described in a rather different form. Just as in the theory of 
interpolation, where (apart From minor variants) there exist two basic approaches ' 
which artl either based on the values measured at the different points (Lagrangien 
form) or on the differences (of variousorder) between adjacent points (Newtonien 
form), the fitting of a polynomial can be likewise achieved by these two methods. 

Although in ganeral - as a detailed comparison would confirm - the form chosen 
above, in which the adjusted result is expressed explicitly in terms of the ordinates 
involved, turns out to be more practical, there are some special cases, where 
the difference-formalism turns out to be simpler. In particular , this is true when 

m = [[p;3 ï] . A single difference is then ail we need and no c~effi~ients have 

to be tabu ra t,ed. We confine ourse Ives to mentioning the corresponding formulae 
which are 

l' 

- for p = 2 or 3 ft; 3 . 4 = y . - 35 ~ Yi-2 and m = 2 P,O 1 
(44) 

- fo r p = 4 0 r 5 1 A 
5 6 = Yi + 231 6. y. 3 and m = 3 J 1 P,O 1-

(45) 

where the (forward) differences are defi~ed as usual recursively by 

il y. - Yi+l - y. 
1 1 

and 
k Â (6k- 1 . k-l . k-l f1 y. - y.) = Û. Yi+] - 6,. y . . 

1 1 1 
(46) 
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The relation of these formulae with the approach given above con be readily 
established by use of the identity 

k L y. , 
k k . 

= 2: ( .) (-1) 1 • y'+k . 
'-'"'1 l ' -1 I-V 

(47) 

Starting from the originally measured values y., the corrections can thus be , 
easily determined for instance on a computer by forming numerically the 
successive differences, where the IQst a lone ha s to be reta ined. Again, the 
differences for the first and the last m va lues y. will not be available for , 
determining the corrected values A by this a lgorithm. As suggested before, 

p,o 
the simplest way is then to replace them by the original values. 

For other conditions than those given in (44) and (45), more than one difference 
as weil aS new coefficients are involved so that the advantage of simplicity is losh 

7. Triangular weights 

ln establishing the normal equations (4), it has been tacitly assumed that 
the 2m+1 experimental values y. used for the adjustment have equal weight. , 
Although this is not strictly true in general, it can be argued that the local 
fitting involves only a few neighbouring channels the contents of which are 
usually not very different from each other. In re a lity, a more stringent reason 
for adopting the simpl ification was that otherwise no formai ism with general 
coefficients C>\ . (or likewise~.) could have been elabora ted. 

1 1 

On the other hand, weights which are associated nat with y., but with g., seem 
, 1 

perfectly acceptable. We therefore first have to ask whether they could be of 
any interest in the smoothing. We think that this might be the case for the 
following reason. The sole purpose of adjusting a polynomial is to obtain an 
improved value at its mid-point (and eventually the derivatives). Therefore, 
the polynomial is only a mathematical vehicle and has no physical meaning in 
itself. The choice of its characteristic para meters p and m is usual/y difficult 
to justify and somewh a t arbitrary, as has been seen above. By choosing the 
least-square; criterion (3), deviations of the measured points From the polynomial 
towmds the end of the interval o re taken into a ccount exactly in the so me way 
(lS those occurring in the middle, although finally only the behaviour ot the 
center is used for determining A. a nd A l' It does not seem unreasoriable, 

p,o p, 
therefore, to expect an improved fit in the region of actual interest if the various 
points are weighted according to their distance From the center. 

Unfortunately, we must admit that no objectiVia criterion for determining such 
weights has been found sa far. This might be used as on argument for rejecting 
the very idea of introducing weights; on the other hand, it could also mean that 
a subjective element has to be tolerated, at least for the moment, as is olso 
the case in judging the quai ity of the fit. 
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For the sake of simplicity (in particular in view of the numerical calculations), 
we suggest tentatively the following weights 

W . :::: m+ 1 -Iii, 
1 

for 1 jl ~ m , 

where the fit is supposed to extand over 2m+1 experimantal points y,+, which 
1 1 

(48) 

are situated symmetrically around the central channe 1 x •• When (48) is plotted , 
graphically, its points form a discrete triangle and we therefore cali them 
triangular weights. They are ail integers a nd not normalized to unit y, but this is 
of no consequence. The case treated previously IIwithout li weights con now be 
described more correctly as involving equal or IIrectangular li weights 

w . = 1 , 
1 

for 1 il ~ m , 

which, however, do not appear explicitly in the calculations. 

If the idea of weights is accepted, the formalism outlined in section 2 has to be 
modified accordingly, the changes being modest. 

If we now define, by generalizing (5), the corresponding quantities (marked with 
dashes on the left) by 

15 
r 

and IF 
r 

the normal equations (6) now read 

~ 15 • lA = IF k70 r+k p,k r 

[ r i = ,w x yi, 
L ....: 

The calculations needed to arrive at explicit formulae for lA k are exactly 
p, 

(49) 

(50) 

the same as before (ail quantities are dashed now) and will not be repeated. 
V/hen 011 this is done numericolly - we confine ourse Ives to determining lA 

p,o 
for p = 2 or 3, for illustration -, one arrives at the values for 15 and IT given 

r r 
in the Tab les A3 of the Appendix. By inserting these quantities into a formula 
which corresponds to (10 1

), we finally arrive at the values for the coefficients 
I~ , and IN given in Table 3. They allow in much the Same way as before 

1 0 

to obtain the smoothed value for the central point x. by forming in analogy to (18) 
1 

1 ~ + 
1 A. - ( 1 - + '.... 1 · D ) 

p,o - IN
o 

'-.x o Yi j:1 ;X i j . (51 ) 

Extended numerical checks have shown that adjustments performed with the 
weighted coefficients 1.)( , lead to results which show less distortion of the original 

1 
data thon do the corresponding coefficients <J( , based on rectangular weights. 

1 
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If (o) = Ip, Table 3 - Coefficients needed for evaluating the smoothed value 
(with triangular weights) 

p P,O 

For p = 2 or 3: 

m 11'-1 I D,( I~ 'D( 2 1 .)( l '.)( 1 Cl( 
0 0 1 3 4 5 

2 15 9 4 -1 

3 132 58 36 9 -8 

4 675 235 168 81 4 -33 

5 717 2J7 160 98 36 -1 J -28 

This behaviour is also confirmed by a comparison of the respective moments 
(see Fig. 2). Ail the relations given in section 5 hold also for the moments of 
the convoluting functions which are based on triangular weights. Examples of 
actual fits are given in Fig. 3 and 4. 

Notes added in proof 

1. A new reading of the relevant chapters in [7J - they had originally been 
studied several years ago for a different purpose - reveals that two explicit 

formulae for obtaining ex./i'-! are actually stated there on page 301. In our 
1 0 

notation they can be written in the form 

- fo r p = 2 0 r 3: 

N C 'N 
3 - = 

0 m 0 
(4m 

2 
-1) (2m+3) 

2 5.2 
(52 ) 

oc - C . ~ . = 3m +3m-l - 1 
1 m 1 

- fo r p = 4 0 r 5: 

N CI 'N 
15 - = 

0 m 0 
4 (4m 

2 
-1) (4m 

2 
-9) (2m+5) 

(53) 
Q( 4 3 2 2.2 4 i = C~ • o<j = 15m +30m -35m -50m+12 - 35(2m +2m-3)1 + 63 j 

The quantities C and Clare the largest common factors between N and 0<. 
m mOI 

for a given value of m. They drop when the ratios 

gj = O(ljl /N o = <XIi i/No 

are formed. Actually 1 we did not check the various tedious summations needed 
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