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On the smoothing of empirical spectra

Jb"rg W. Muller

1. Introduction

The spectral distribution of particles emitted in a nuclear reaction is
usually measured by means of an analysis of the corresponding pulse heights.
The spectrum available for study then consists of a set of numbers which indicate
the contents of the kicksorter channels. As a result of the random nature of
nuclear reactions, these numbers are always more or less disturbed by statistical
fluctuations.

The problem of "smoothing" or "filtering" empirical data therefore arises naturally
whenever g quantitative ‘analysis of the spectrum is required, as will be the case
for a precise location of the peaks (calibration) or for area determmahons
(intensity).

The shape of such a spectrum is in general too complicated to be deséeribed
analytically, although attempts with multiple superpositions of "standard spectra”
(with adjustable parameters for location and intensity) have been made repeatedly.
But even if this approach is chosen, and perhaps especially in this case, the
previous reduction of statistical scatter is often a necessity.

Under these circumstances, a fairly obvious attempt to obtain a smoothed’ spectrum
is to make a "local" least-squares qd|usrmenf and this technique has been
described in detail by Savitzky and Golay [ L J ; a paper which is still quoted

as the basic reference and apparently much used by nuclear chemists. The approach
has been known long before, however, and as an example for an earlier

referénce [2] might be quoted :

In the first part of the present report, we shall give a short summary of the
underlying theory although this is just a simple appllcanon for the well-known
general least-squares technique. However, it will give us the opportunity

to correct s_ome of the more dlsturbmg misprints found in [l] Today the main
interest in | ] lies obviously in its extensive tabulation of the factors by which
the orlgmardoto have to be multiplied (for details see later). It may be somewhat
surprising, therefore, that quite a large percentage of the listed coefficients
have turned out to be erroneous when the tedious numerical values were
recalculated. '

Finally, some remarks on the quality of this type of adjustment will be added
as far as the influence on the moments is concerned, and the eventual
usefulness of weights is also briefly discussed.



2, Sketch of the least-squares approach

The empirical data are supposed to be available in the form of pairs
(xi, yi)' where x, is the channel number and Y its content {equally spaced

observations): As the index i runs from 1 to, say 512 or more (depending on
the type of analyzer used), the "true" shape of the spectrum in a limited region
of n=2m + 1 channels (i.e. the central one and m neighbours on each side)
may be reasonably supposed to be smooth enough to be represented by a poly-
nomial of order p (see Fig. 1)

f (x,) = A +A Lix, A -x.2+“'.+A‘ - xP
pi p,O p,1 i Pyl pyp i

N Al e m
k=0 d

where p {(2m.

(The case p =2m corresponds to a problem of interpolation, whereas p > 2m
has no solution).

The first derivative of (1) with respect to x is obviously

, _< . k=1
fp (xi) = k‘%] k Ap,k X, ’ (2)
In particular, we observe that for X. = 0, which will later be chosen as the

"central” point to be adjusted, the "smoothed" value is simply given by

fp(o) = A , foranyp, (1)

p:so
because it lies on the polynomial (1). Likewise, the adjusted first derivative is

f;(o) = Ap,] . (2")

Similar formulae exist for the higher derivatives, but they are omitted here
as only the first derivative is needed for the exact peak location.

The best fit of the polynomial fp(xi) to the n measured values (xi, Yi) by the

method of least squares leads to the conditions

o 12
- y.-f(x.)} = J, k=9,1, ..., p.
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Fig. 1 - Schematic plot for the local fit of a polynomial f (x)
to the measurements around x: (for m = 3).
Ap o is the smoothed value at the mid-point x;.
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Fig. 2 = Graphical plot of the first non-vanishing moment My
of the convolution function 9 (for rectangular and
triangular weights, see text)






If the n channels are located symmetrically around a central channel X s
this corresponds to the p+1 equations

J’gm{y”i -fp(x”i)} i e
since 3 f (x) = xk .

oA P

prk

These are the well-known normal equations which, when written in full, are

] - 2- -
Ap,o n+ Ap’] [x] + AP,2 [xe] +* aed Ap,p [xP] [y]
Ao Xt A . Ao2 X 7 " [xP*1]= [xv]
- 2= - 3= 4= 29 _r 2. ">
Ao XIT A DT+ Ap’z[x_l L +AP:P“'p 1=0xy] @

= +1 - +2= 2 - -
Ap,o [P+ A [xPT ]+ Ap,z [P ]+ e +Ap,pn_x P =[<Pydls

where for instance
m
2 = . <— 2 .
[x yj] = fs_ xH_i yi+i
[==-m

With the abbrevigtions

Sr = i:xr] and Fr = Exr'y’ 7 (5)

this can also be expressed in shorter form as

k§° Sr+k'Ap,k = Fr ’ r=0,1, ..., p, (6)

which corresponds (apart from a misprint) to equation Vb in [l- ‘

The 'ob‘sc'issa'xl stands for the channel number and is therefore a (posmve) mfeger.

As we can always take the central channel x, as the orlgm the quonrt;:t’y X,

~+Pr
1
may now be identified with j. Then
m
m 22 i"  for r even (#0)
5, ® 2 T =L , , b
[==m 0 " rodd ,

whereas So = 2m+ 1 .



This, in turn, results in a splitting of the system of normal equations (6) into
two separate groups which are

~ . =
lf_/—_- S2(k+r) Ap,2k F2r (8al
=0

and

(@]

= : _

2 20+l Ao, 2k T Forny {55}

MTo+11 —_
with r ranging in both cases from 0 to Q = | &2—1.‘“‘ , where [LY_!] stands
as usual for the largest integer below y. According ;, all the "even" coefficients

° n n
Ap,O' Ap,2' Ap,4' ... appear only in the system (8a), whereas the "odd

coefficients A ., A ., A ., .,, are restricted to the set of equations (8b),
p,1 p,3 P,

It is a peculiarity of the system (8) that, as a result of (7), augmenting p by

one unit adds only one new equation to either (8a) or (8b), while the other set

remains unchanged, Therefore

A
p,k
provided that k and p have the same parity (i.e., are both even or both odd),
In this case, also the corresponding coefficients & (or f) and the normalizations
N (see later for the definitions) are obviously the same.,

= Ap+1,|< . (9)

The determination of the coefficients A K is straightforward, Thus for p = 3,
for example, we get from (8a) Pe

Pae Pa Pggtiy B R

A, S, +A, S, =F, |,
(o]}

5,0 "2 “3,2 %4 2
hence ) S4 Fo -5 F2 ,
A = " (12)
3,0 S 5 - S2
o 4 2
and likewise from (8b)
Ay 1 'S, +A, .S, =F

3,1 "2 3,3 "4 1

6
F

A3,l - 3 ; an
4



The quantities S depend also on m, as is evident from their definition (5).
A short table of "their numerical values is given in Table Al of the Appendix.

It is sufficient for determining Ap " and Ap ! for polynomials of degree p =2
7 ’

to 5 and up to n = 11 points. These explicit results of very elementary, but
quite tedious calculations are only given to allow easy checking of those
coefficients X or B (see later) which have been found to be arroneous in the more
extended tabulation in [l]

If we continue our example, for instance with m = 4, and restrict ourselves

to the evaluation of A3 o the quantities needed further are F and F2, for which

we get (with X, = 0) from (5)

. o ot o'
Fo = A g H S g gt e B g
and
- 2, 2, 2,
Fp = (-4 PR R TE N
which may also be written as
- + + -
fo v *Bj+ By + D3 =+ Dy
and
B LTI S S S T
F2— D]+2 D2+3 D3+4 D, »
here DY =y + (12)
where i — yi+i Yn o @

Hence, the numerator in (10) is

+
Sp) "Dy + (S,

2 +
+(S4-3 52) D3+(S

_ ; 2e v .t
S4Fo=SpFy =S4Tyt 6y -2°S)) 1Dy

2 +
- 455,) D)

708 y. + 648 DT

+ + +
| *468D, +168D, -252D, ,

4

where the corresponding values for S, have been taken from Table Al. Since
the denominator of (10) is

2 _
S, S4-S, = 2772,

dropping of the common factor 12 finally leads to

o + + + +
A3,o = .2_3.T(59yi+5401+39D2+]4DS-2ID4) "

By generalizing the explicit calculations made in this example it is easy to see
that the coefficients Fr’ originally defined by (5), can also be written as



m
Z ir D for r even (except 0)
= .
Fr = - LA (13)
z |r D " rodd ,
i=1 1
S
whereas m
Fo N i % ZD &
=1
with
DT = yH'i + Yi_: (14)

It is practical to introduce the following abbreviations for certain combinations
of the factors Sr which appear repeatedly in the evaluation of the coefficients

A

Plk:
N 2 _ 2
Ty = 535075 - Te = 4% "% -
- 2 = =
Ty = 395579 - T7 = 543%107 %% - (1)
= . : 2
Ts = 52587345 - Tg = 3107 *
These coefficients are listed in Table A2 of the Appendix. With their help, -
the formulae for Ap . and Ap | as they result from the normal equations (8),
can now be simplified to
- forp =2 or 3: '
S,F -S_,F ;
A _ 4 o "2 2 4 (107
p,o T2
) Sé Fi =5, F3
Ap e 7 : an)
’ 4
- forp=4or5:
W oo TsTaTTe Ry i
psO T65°-T532+T4S4 : :
. _JeF=Tafa* T, s o
p, T852~T7S4+T656
It is now.ea_sy. to realize that, in f_,hé gé‘héro'f case, the result for A will
always be of the form . o S
m

o b g .
/-\p’o = W(\x y.+ > x.D,) , (18)



and for Ap p @ similar reasoning leads to the expression
4

The coefficients . and the normalization factors No (or the corresponding

quantities Bi and N] for evaluating the derivatives) are given in Tables 1

i -
NP

and 2 for p up to 6 and m not exceeding 10: A more extended tabulation
(up to m = 12) can be found in [1] » but it should be used with caution.

Table 1 - Coefficients needed for evaluating the smoothed value fp(o) = A

(with equal weights)

Forp =2 or 3:
L B X ) sl =g X4
2 35 17 12 -3
3 21 7 6 3 2
4 | 231 59 54 39 14 21
5 | 429 89 84 69 44 9
6 | 143 25 24 21 16 9
7 | 1105 167 162 147 122 87
8 | 323 43 42 39 34 27
9 |2 261 269 264 249 224 189
10 | 3059 329 324 309 284 249
m ol %5 %4 % “g X9 %10
5 | -36
6 0 -1
7 | 42 =3 -78
8 | 18 7 -6 21
9 | 144 89 24 -51 -136
10 | 204 149 84 9 4 =37

4

(19)
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Table 1 (cont'd)

Forp =4 or 5:

m No E %o & g g %4
3 231 | 13 75 -30 5
4 129 | 179 135 30 255 15
5 29 | 143 120 60 -10 -45
6 | 241 | 677 600 390 110 _135*
7 | 46189 | 11083. 10,125 7 500 3 755 165
s | 4199, | s 825 660 415 135
Cinntgel o 7429 | 1393 1 320 1110 790 405
07 [ 280015 | o4a003 42120 36660 28190 17 655
mooXs X o g Xg “10
5 18
6 198 110
7-| -2 922. -2 860 2 145
8 -117 =260 -195 195 -
9 18 =290 ~420 -255 340
10 6378 ° -3 940 -11 220 -13 005 =4 460 11 628

* Corrects the corresponding value given in []j :



Table 1 (cont'd)

8b

For p = 6**
r ,

4 1 287 | 797 392 -196 56 =7
5 2431 | 1157 784 28 -308 161
b 46 189 | 18 063 14 000 4 550 -3 500 -3 605
7| 12597 | 4199 3 500 1 750 -140 -1 085
8 96 577 | 28 109 24 500 15 050 3 500 -5215
9 37145 | 9605 8 624 5 978 2 492 -679
10 | 334305 | 77 821 71 344 53 508 28 812 3 801
mijf g g Xy oo X g X9
5 -28
6 3 388 ~770
7 -476 910 -260
8 | -6916 -910 6 500 -2 275
9 | -2 389 -1 918 344 2 25] -952
10 [-14 364 -19 908 -11 016 7 021 18 088 -9 044

** These values are not tabulated in rlj ;




Table 2 - Coefficients needed for evaluating the smoothed derivative

f"a(o) = Ap,l (with equal weights)

Forp =2:
u N : Py B By Py
2 10 | 1 2
3 28 } 1 2 3
4 60 | 1 2 3 4
5 110 | ] 2 3 4
6 182 1 2 3 4
7 280 | ] 2 3 4
8 408 | | 2 3 4
9 570 | ] 2 3 4
10 770 | ] 2 3 4
m Ps Be B, Pg By Bro
5 5
6 5 6
7 5 6 7
8 5 6 7 8
9 5 6 7 8 9
10 5 6 7 8 9 10




Qa

Table 2 (cont'd)

Forp=3 or 4:

m by : Py B, By By

.6 12 | 8 -1

3 252 | 58 67 22

4 1188 | 126% 193 142 -86

5 5148 | 296 503 532 294

6 24024 | 832 1 489 1 796 1 578

7 334152 | 75% 13 843 17 842 18 324

8 23256 | 358 673 902 1 902

9 255816 | 2816 5 363 7 372* 8 574

10 3634092 | 2959 56 881 79 564* 95338

i Bs Pe B, Pg By B1o
5 -300

6 660 -1 133

7 | 14150 4121 12 922

8 930 643 98 -748

9 | 8700 748 4 648 -68 -6 936
10 1101 900 96 947 78 176 43284  -10032 -84 075

x The coefficients given in this line are only meaningful for an adjustment
with the lower value of p.

* Corrects the corresponding value given in [1] §



9d

for p=4or5:

i Ny} T Y) Yp Y3 Yy

|

3 132* | - 70* - 1% 67* - 13*

4 1 716* | - 370* = G 1# 151* 371* - 126*
5 1 716* e 190* - 136* 1* 146* 174*
6 58 344* | ~ 3 780* -3 0l6* - 971* 1 614* 3 504*
7 1 108 536* |- 45 780* - 38 859* - 19 751* 6 579* 31 856*
8 100 776* | -2 820% -2 489* -1 557* - 207* 1 256*
9 1 961 256* |- 38 940* -~ 35288* -24867* -9 282* 8 792*
10 980 628* |~ 14 322* - 13224* -10061* - 5226* 626*
m ¥s Ve ¥z i Yo 10
5 - 90*

6 2 970* -2 211*

7 44 495* 29 601* - 31 031*

8 2 405* 2 691* 1 443* -2 132*

9 25 610* 36 357* 35 148* 15 028* - 32 028*

10 6 578* 11 451* 13 804* 11 934* 3 876* - 12 597

* Corrects the corresponding value given in [ﬂ.

-
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3. A simple check

In view of the real danger of errors in the lengthy numerical calculations,
any control for the coefficients &, B and N would be very welcome, even
if this were only a necessary, but not a sufficient condition for the values to be
correct.

As a matter of fact, such a control can be easily derived by assuming a particular
distribution of the experimental measurements Y; For

Yiti =ji', withqgop, (29)
the adjusted polynomial (1) will only consist of one term, thus

A L= 5. (21)
Ps1 179

Inserting (20) into (14) gives

JfZ iq for q even

D" =
l LO " g odd,
_ 0 for q even

but D, =
' 2% " q odd.

By applying (21), we get therefore in particular

- for q =0, from (18)

o e et 0 h o O
/ﬁ.p’o ] < (o(o 0 +2._4,°(i i )y
o =
and hence for the normalization
m
N =& +2 > . (22)

- for g =1, from (19)

1 m
Pot T VRIS B

and hence for the normalization

m
N, =2§]i-pi. (23)
i=
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Similar checks obviously exist for the coefficients used in determining the
higher derivatives of f (x), which have not been treated here but can be found

in [l] . We note, however, that what these authors call "/.pq" would correspond

A

to our qf .hP q °
’

Further checks for Ap " will result from a discussion of the moments (section 5).
'4

4. Smoothing and folding

The individual adjustment of a polynomial to each measured point (and its
neighbours) for determining the "smoothed" value as well as the corresponding
procedure for obtaining the derivative can also be considered from the point of
view of the folding of two functions. As a matter of fact, the relation (18) may
be written in the equivalent form

_‘l'_n_ m
f, = fp(xi) = yi+i'g. = > Yioi 9 (24)

| o ] o
|=-m j=-m

if the discrete function gi is identified with

gi Eﬁxlil/l\!o ; for 1jl L m. (25)

The values of gi are seen to be essentially identical with our tabulated
coefficienfsc(i. Therefore, such a set of values can be thought of as representing

some kind of discrete weighing function with which the observed data have to be
convoluted in order_fo obtain the smoothed values, or in the usual shorthand
notation (see e.g. L3j y P 7 £F)

f. = vy, @g.i =y, * g - (244q)

Similarly, the (smoothed) first derivative, according to (19), can now be written as

n n
fi = fp(x,i) = 2 yi+i-hi = = yi_i'hi r (26)
= =m [==-m
or F; o @hi B omy, hi . (26a)
with _
-ﬁlil/N] for <0
hi = ,< 0 " | = 0
BNt 0. @27)
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The discrete function hi plays a role similar to g. above, but is antisymmetrical.
We note, however, that neither 9, nor hi can be taken as probability functions

since they may assume negative values.

In the language of electrical network theory, the function g. would be called

a digital "filter". As its function in the smoothing process is obviously to reduce
the "noise" caused by the statistical fluctuations, it should act as a low=-pass
filter becquse the noise has a "white" frequency spectrum. This means that, since
the different channels are uncorrelated, its density extends with an approximately
constant value from zero to high frequencies (limited by the reciprocal of the
channel width).

However, this aspect of the smoothing problem will not be discussed here further
as it has been treated repeatedly. Two examples of frequency spectra of such
filters are given in £4] .

Let us finally deduce (although by somewhat heuristic arguments, as will become
more obvious later) an interesting, simple relation between the functions g, and h..
If the Laplace transform, defined by ! l

Ly s} = £ ;._iyi-e'si =506 . (28)
= oo

is applied to (24) and (26), we get

L{fi} = J(s)*gs) (24')

Lt = T

However, since I,ﬁfi} = f(s),

but ;Lif%‘;

we see by comparing (24') with (26') that

and

-5(s) hs) . 26")

s ?(s) ,

)
his) = -s-g(s) ,
which corresponds for the original weighing functions to the relation

h, = =g, (29)

The relation (29) could be used for checking the coefficients O(i and Bi , but
in general this will first require some interpolation formula, as the function g,
is discrete and therefore cannot be differentiated directly. However, gi in (29)

may be identified with the derivative of the corresponding interpolation
polynomial of degree 2m.
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Nevertheless, in some simple cases a direct comparison is still possible. Thus,
forp =2 and, say m =5, we get the following values (normalization neglected):

i # {8 ~4 3 & «1 0 .1..2 8 &4 5

g.~~ |-36 9 44 69 84 89 84 69 44 9 -36

(gi+]-gﬁfv 45 35 25 15 5 =5 =15 =25, =35 -45

g}f\/ (50) 40 30 20 10 0 -10 -20 -30 -40 (-50)

hi s -5 -4 -3 -2 -] 0 ] 2 3 4 3

The values gi have been taken from Table 1 (since giuo( i). As the quantity
gi"']-gi is manifestly linear in j, the derivative g! at the values | can be guessed

readily. A comparison with the B's from Table 2 then confirms the proportionality
implied by (29).

5. Moments, distortions and controls

A relation between the moments of gi and h. can be obtained as follows.

If g(s) is the Laplace transform of g,, then the moments of order k of the function
9, are known to be given by

M = £ = (-0kg%| (30)
k ~
with E(k) = —d—-lz E(S)J
ds
Since T\I(s) = -5 E(s) , we get similarly for hi

W @31)

N“k(h) = ("'])

$=0

But for the n=th derivative of a product of two functions A and B, Leibnitz's
rule states that

n ¥ *
-5 - > (?) Al=i) g0 (32)
=

(o)

with A =A,B“)=B.
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In our case we therefore obtain

6-HW = gl gkl) (33)
because s(o) =s and s(]) =1,
but 5(2)=...=s(k)=0.

This then yields for the moment of order k of hi

e K+, k=D
Mo = (kG kM) (34)

In particular, for k=1 we therefore obtain
My(h) = Mo(g) =1, ' (35)
in accordance with (22) and (23).

As a result of the symmetry of the functions g, and the antisymmetry of hi,

we have obviously for the moments (k =0, 1, 2, ...)

M (g9 = 0 for k odd

MZk(h)

0 " k even.
By looking at the relation (34), one might now feel tempted to conclude that
all moments (for k > 1, say) of 9, and hi vanish. However, this is certainly

not possible, since the requirement for all moments M, (g) to disappear corresponds
to infinitely many equations, whereas the number of conditions which can be
fulfilled by the m+1 values «, is necessarily limited. The origin of this

discrepancy lies in our previous (and perhaps somewhat hasty) identification of
the sequence « . with the interpolating polynomial 9 (and similarly for hi).

A closer look at the situation reveals that - in addition to (35) - only the following
moments can be used for checking the coefficients o. and B, (when p does not
exceed 5) I I

.
- for - My g) = 0 for 1 ¢ kg [ILP,Z—II ,

) m
thus Z izq. =0 for p > 2 (37)

L
and >ix, =09 "p oy 4
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thus i B.=0 forp >3 (38)

a5
and Eiﬁ,‘—‘o g =8

The smoothing of the original data is a process which inevitably introduces
distortions, some of which are "wanted" whereas others will be considered as
"unwanted". As a matter of fact, it is usually most difficult, if not impossible,

to tell in advance how a favourable balance between these two possibilities can
be achieved. As the judgment is usually based on visual inspection of the smoothed
data, even the separation between the welcome and the undesirable effects

is obviously subjective.

Several attempts to improve this situation have been made. In particular, it would
be desirable to have available a simple rule for choosing the degree p of the
fitting polynomial and the number n =2m + 1 of points to be selected. Thus, for
p = 3 a special study has been made [5] where five different methods for choosing
the best value of m and four criteria ior iesiing the effectivencss of smooiiiing
are discussed. However, no definite policy can be deduced from this, apart,

of course, from the well-known and rather obvious rule that the amount of
smoothing increases with m and decreases with p.

A more detailed insight into the mechanism of smoothing is provided by a look
at the integral transforms of Y; and 9; - The high-frequency contributions of the

experimental spectrum Fi(u), with v =5/(247i1), which are supposed to be due

to noise, are best eliminated by choosing values of p and m for which the
corresponding low-pass filter Ei())) rejects the unwanted high frequencies.

However, care must be taken so as to not seriously distort the low-frequency
contributions which are characteristic of the "signal", i.e. of the true spectrum
o o o IV

shape . These questions have been discussed for example in {4 | and Cé] .

Another general approach which may be useful for a rough estimate of the
distortions brought in by the fitting procedure can be based on the moments.
The fact expressed by (24a), namely that the smoothed curve fi can be considered

as the result of folding the original measurements Y; with a certain weighing

function 9:s leads readily to a simple relation between the corresponding moments.

The moments Mk(f) of the function Fi =y, *g; can be expressed in terms of the

moments f‘v‘\i(y) and z",:"\,l,(g) of the convolution factors by means of (see [3], p. 54)

\ o< ky ,
‘\"k(f) = |=§o ( I) lnk_i(y) mi(g) . (39)
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Since according to (35) and (36)
M (g =1 and M2k+‘(g) = 0,

(o]

the relation (3?) reduces to

M(f)—()M(y)-M g)+§( My gV * My(a)

with 1 £ j

r— 1

!-____i
L2

When this is combined with (37) we arrive at

k :
= -“\_ A
M, (F) Mk(y)“'?(Zi)Mk_Zi(y) Ayi(@) s (40)
o TTeT] o Tkt
e 5] << |17
Therefore
Y - . . /p+1 for p even
MO = M) ik q\ -G (41)

i.e. these moments of the original curve are not influenced by the fitting
procedure. The first change occurs for the moment of order

and amounts, according to (40), to

M) = M) = () M)+ M(e) = () - (42)

It is a fairly obvious condition for any acceptable fitting procedure to change
neither the total number of observed events nor the position or the "width" of
a spectral line. This corresponds to demanding that

Mo(g) = | and M](g) = Mz(g) — i

A look at (35), (36) and (37) shows that this is always the case provided that
p> 2. As for the moments of higher order, the situation is less clear. If we
demand as little change as possible for them too, the best choice would be
a high p (practically limited by the tables available for the corresponding
coefficients O(I and ﬁi) and the lowest compatible value of m, which is

g
m = L ET | On the other hand, this will clearly also diminish the smoothing
effect so fﬁot in reality o compromise has to be made. The limiting case gI SI "
’
is of no practical interest as it corresponds to a pure interpolation, where
always fp(xi) =Y thus giving no smoothing at all.
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A plot of some numerical results for the first non-vanishing moment of the
weighing function g is given in Fig. 2. It can be seen that its absolute value
increases with m, indicating thereby a stronger distortion.

6. Additional remarks

If the process of smoothing were iterated a large number of times, the resulting

set of adjusted values would tend towards a least-squares polynomial of degree p

for the entire range of the measured values. This would obviously only be the

case if "off-center" formulae had been used for the m values at the beginning

and at the end of the interval, as it is customary in the related field of interpolation
(see e.g. [7] ). For the sake of simplicity, however, it will be preferred in

most practical applications to renounce this refinement and to use, for instance,

the original border values instead of the adjusted ones.

In any case, this limiting behaviour obviously restricts the usefulness of such
repeated convolutions. Whereas a polynomial fit of degree p may be reasonable
for n = 2m+1 points, this procedure will become doubtful for @ much more
extended range. Furthermore, we arrive at the (somewhat embarrassing) conclusion
that the limiting polynomial (of degree p) obtained by repeating the convolution
with n points each time is not independent of n (or m). This is a direct
consequence of the fact that for a given p

o™ g§m2) = g§"'1+"’z) . (43)

Indeed, a simple example with, say m, =m, = 2 and p =2 or 3, already shows

(2)

that the coefficients for m,+m, = 4, when determined by a self-convolution of 9,

i.e. with m =2, do not agree with the values listed in Table 1 for m = 4.
Putting for brevity

(m]’2=2) (m]+m2=4)
9; =g, end, g, = 94

equation (29) tells us to form

2

= .

which results in

G, T 9,979 y9.y%9, 9, 7979, 19,9, .
€1 7927 9,9 Fe19,%9 9

Gy = 9,95 919y To,9,

3 - 9192 Y99,

4= 929_2:
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or with (21) and the numerical values from Table 1 (for m=2 and p=2 or 3):

whereas for m=4

35°.6 = 595, « = 59
[o) (o]

352 ~G] = 336 O(] = 54
2 _ "

35 G2 = 42 0R2 = 39
2 _ ;e

35 'G:3 = 72 0<3 14

2 2 o (C = 5 = -

35 04 9 3\4 21 .

As the resulting weighing function G, is clearly quite different from the values gi

obtained directly for m=4, it follows that an adjustment with o higher value of m

cannot simply be = replaced by the combined effect of simpler fits such that
m = > m. .

Finally, we should mention that the polynomial fits treated in this report could
also have been described in a rather different form. Just as in the theory of
interpolation, where (apart from minor variants) there exist two basic approaches:
which are either based on the values measured at the different points (Lagrangian
form) or on the differences (of various order) between adjacent points (Newtonian
form), the fitting of a polynomial can be likewise achieved by these two methods.

Although in general - as o detailed comparison would confirm - the form chosen
above, in which the adjusted result is expressed explicitly in terms of the ordinates
involved, turns out to be more practical, there are some special cases, where

the difference-formalism turns out to be simpler. In particular, this is true when
| l

+ I| ;
m=| u A single difference is then all we need and no coefficients have

b
to be tabuHafed We conflne ourselves to mentioning the correspondmg formulae
which are

-forp—2or3‘ 3 .4

and m =2 ’;' Ap,o - B{TEE A Vi (44)
-for p=4or5| _ 5 .6
and m =3 Ap,o Yy " 237 - Yi-3 * )

where the (forward) differences are defined as usual recursively by

LY = Y Y

1

>
9
~
i
>
>

y.) = A Yeyg, AT Ty, ' (46)



The relation of these formulae with the approach given cbove can be readily
established by use of the identity

PO ) (-ni- (47)
e ALY Mk

Starting from the originally measured values Yir the corrections can thus be

easily determined for instance on a computer by forming numerically the
successive differences, where the last alone has to be retained. Again, the
differences for the first and the last m values Y will not be agvailable for

determining the corrected values A o by this algorithm. As suggested before,

P
the simplest way is then to replace them by the original valuesi

For other conditions than those given in (44) and (45), more than one difference
as well as new coefficients are involved so that the advantage of simplicity is losta

7. Triangular weights

In establishing the normal equations (4), it has been tacitly assumed that
the 2m+1 experimental values Y used for the adjustment have equal weight.

Although this is not strictly true in general, it can be argued that the local
fitting involves only a few neighbouring channels the contents of which are
usuclly not very different from each other. In reclity, o more stringent reason
for adopting the simplification was that otherwise no formalism with general
coefficients et (or likewise Bi) could have been elaborated.

On the other hand, weights which are associated not with Yir but with gi' seem

perfectly acceptable. We therefore first have to ask whether they could be of
any interest in the smoothing. We think that this might be the case for the
following reason. The sole purpose of adjusting a polynomial is to obtain an
improved value at its mid=-point (and eventually the derivatives). Therefore,

the polynomial is only a mathematical vehicle and has no physical meaning in
itself, The choice of its characteristic parameters p and m is usually difficult
to justify and somewhat arbitrary, as has been seen above. By choosing the
least-squares criterion (3), deviations of the measured points from the polynomial
towards the end of the interval are taken into account exactly in the same way
as those occurring in the middle, although finally only the behaviour at the

center is used for determining Ap o and Ap e It does not seem unreasonable,
4 7 . v
therefore, to expect an improved fit in the region of actual interest if the various

points are weighted according to their distance from the center.

Unfortunately, we must admit that no objective criterion for determining such
weights has been found so far. This might be used as an argument for rejecting
the very idea of introducing weights; on the other hand, it could also mean that
a subjective element has to be tolerated, at least for the moment, as is also

the case in judging the quality of the fit.
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For the sake of simplicity (in particular in view of the numerical calculations),
we suggest tentatively the following weights

wi=m+|—li|, for 1jl & m, (48)

where the fit is supposed to extend over 2m+1 experimental points Yipi which
are situated symmetrically around the central channel X, o When (48) is plotted

graphically, its points form o discrete triangle and we therefore call them
triangular weights. They are all integers and not normalized to unity, but this is
of no consequence. The case treated previously "without" weights can now be
described more correctly as involving equal or "rectangular" weights

w, = 1, for ljil ¢ m,
which, however, do not appear explicitly in the calculations.

If the idea of weights is accepted, the formalism outlined in section 2 has to be
modified accordingly, the changes being modest.

If we now define, by generalizing (5), the corresponding quantities (marked with
dashes on the left) by

P B R LN

Sr..!_wx_‘l and Fl_zi:/vx y_li' (49)
the normal equations (6) now read

&

i ot = 1

0 Stk B,k e (50)

The calculations needed to arrive at explicit formulae for 'Ap | are exactly
14

the same as before (all quantities are dashed now) and will not be repeated.

When all this is done numerically - we confine ourselves to determining 'A o
P

for p =2 or 3, for illustration -, one arrives at the values for 'Sr and 'Tr given

in the Tables A3 of the Appendix. By inserting these quantities into a formula
which corresponds to (10'), we finally arrive at the values for the coefficients
'a\i and 'No given in Table 3. They allow in much the same way as before

to obtain the smoothed value for the central point X by forming in analogy to (18)

A = ("o y. + (51)

p,o 'N o

Extended numerical checks have shown that adjustments performed with the
weighted coefficients '.3<i lead to results which show less distortion of the original

data than do the corresponding coefficients (xi based on rectangular weights.
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Table 3 ~ Coefficients needed for evaluating the smoothed value 'f (o) ='A
(with triangular weights) P

7

For p =2 or 3:
1 t ] IR 1 ] | 1
m No g a(»o 3(] 0<2 x3 x4 o(5
2 15 ; 9 4 =1
3 |132 ; 58 26 9 -8
4 |675 | 235 168 81 4 -33
5 717 | 297 160 98 36 =11 -28

This behaviour is also confirmed by a comparison of the respective moments
(see Fig. 2). All the relations given in section 5 hold also for the moments of
the convoluting functions which are based on triangular weights. Examples of
actual fits are given in Fig. 3 and 4.

Notes added in proof

1. A new reading of the relevant chapters in ::7] - they had originally been
studied several years ago for a different purpose - reveals that two explicit
formulae for obtaining qi/i\-!o are actually stated there on page 301. In our

notation they can be written in the form

- forp=2o0r3:

N =C ‘N = 5 3
° T % (4m°-1) 2m+3)
- (52)
x, = C o, = 3m2+3m-] - 5i2 ,
| m I
- for p =4 or 5:
N =¢C' ‘N = 3 ]52
° % 4 (@4m =1) (4m°-9) (2m+5)
- (53)
O(i = C;n . L'><i = ]5m4+30m3—35m2-50m+]2 - 35(2m2+2m-3)i2 + 63 i4.

The quantities Cm and C;n are the largest common factors between ﬁo and ;i

for a given value of m. They drop when the ratios

g, 8 /Ny = Kyl N

are formed. Actually, we did not check the various tedious summations needed
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