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A complex modulo K counter 

JCSrg W. Muller 

1. Introduction 

This report describes an attempt to generalize a previous suggestion [1] 
for distinguishing between single and paired events to the case of multiple 
pulses. Although this problem is at present probably only of minor practical 
importance, it has been occasionally touched upon, especially in the context 
of afterpulses, but the traditional methods do not lend themselves easily to 
a convenient treatment (see for instance r2]). The present approach is based 
on a rather straightforward extension of the correlation function to more thon 
twa states. As an experimental realization should not pose any special problems, 
it seemed worthwhile to sketch briefly the basic ideas. Useful applications, 
for instance for quantitative checking purposes, might be found later. 

2. Choice of the states 

If the development in time of a stationary stochastic process is described 
by a function x(t), the corresponding autocorrelation function is dafined by 
the expectation 

R(S) ;;: E [x(t) • x*(t - S>}. (1) 

We recall that in general R exhibits conjugate symmetry, i.e. 

R (- S) = R * ( S) . (2 ) 

This means that the real part of R is an even function of $ , and the imaginary 
part is odd. In particular, the correlation function is thus symmetric for x(t) real. 

Up to now, x(t) has been a real function which could only take the two values 
+1 and -1, say [3] • Our first problem is to find an appropriate generolizotion 
for more thon two states. Their corresponding values x(t) will now be denoted 
by the discrete states x

k 
' with k = 1, 2, ••• , K. For physical reasons 

we require that R not depend on the initial state (at t- ~ ), but only on the 
development of the process during the time interval S , as the origin of time 



2 

is chosen ot random and should be irrelevant in a stationary process. Thus 

and we shall demand in particular that R(O) = l, 

i.e. x • x* = 1 
k k 

for any state k . 

These conditions con be fulfilled by choosing for the states the K solutions of 
the equation 

K 
x = 

(3a) 

(3b) 

(4) 

These roots of unit y, as is weIl known, con be represented in the complex plane 

imaginary 
axis 

real 
axis 

~~~~~--~-x--=~x~ =l 

o K 

Figure l - Roots of (4) in the 
complex plane 
(sche matie) 

are obviously equal to 1. Since If k = k • 

k 
x k = xl' 

(cf. Fig. 1) and are 

x = 
k 

K . VTT 

= cos I.Ç k + i sin '..f' k (5) 

with f k = k 2 ~ , k = 1, 2, ..• , K. 

One verifies easily that (3b) is 
fulfi lied because 

x
k 

. xi: = cos
2 
'f k - i

2 
. sin

2 * k = 1 • (3b ' ) 

For the sake of convenience, 
we shall occasionally 0150 use" 
X

o 
instead of x

K 
' both of which 

l.f 1 ' according to (5), we can write 

(6) 

We th us see that the solutions x
k 

of (4) form a cyclic group of order K, with 

xl as the generating element. We note in passing that if K is a prime number, 

any other element x, could have been used as weil as a "primitive root". 
1 

ln general, however, the powers of x. will not generate the full group, 
1 
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but only a subgroup, the order of which is K/d, if d denotes the largest 
common divisor of K and i • For other general properties of cyclic groups 
we refer to any book on algebra (for instance [4]). 

As x'k = x
K

_
k 

' equation (3b l
) can now be easily generalized to 

, (3a 1) 

with k = k
1 

- k
2 

(mod K) , 

fulfilling thereby the requirement of (3a) that R only depend on the difference 
of the final and initial states. The effect of the modulo notation, which generalizes 
the concept of divisibïlity, is simply that ail those numbers k now belong to 
the same residue class k l

, for which k-k l can be divided by K. 

3. Modulo-probabilities for a Poisson process 

The more fact that a general ized function x(t) with K states x
k 

can be 

constructed, and that a corresponding (in general complex) correlation function 
R( S) thus exists with properties which agree with what we expect, is by no means 
a sufficient guarantee for its usefulness. In addition, we have to demand that 
such states Can be actually "realized" and measured, and that this information 
can be extracted and interpreted, i.e. compared with theoretical expectation 
which is based on some realistic model for the process under study. Let us first 
tackle the last problem and defer the experimental aspects for later. 

As was done previously for the simpler case (with K=2), which will be used as 
a guide-I ine whenever possible, the basic stochastic process is supposed to be 
Poissonian with count rate y • One of the main problems we were faced with 
was the evaluation of the sums for ail the even or ail the odd numbers of events 
for an expectation ~ = 'r • S . If the probability for observing exactly i events 
in the interval S is 

e
- 1» . ~ i 

P(j) = . l ' 
1 • 

(6) 

th is requires an evaluation of the su ms 
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a.Q 

e -~" J::~ _ ~J., 
Prob (j eve n) = 2 P(2s) = = e . cosh \.-V 

s=O 
L (2s) l \ 

S 

and (7) 
'JO ~2s+ 1 -fJ. 

Prob (j odd) 2: P(2s+l) -/--'- "L 'sinhl--V, = = e . = e , 

s=~ . s (2s+ 1) ~ \ 

respective Iy. 

Although these closed forms look quite attractive, they are not very useful for 
finding the generalization we are looking for. What we now need are infinite 
sums of Poisson probabilities which are e.g. of the form 

P(O) + P(3) + P(6) + P(9) + ... 

or P(2) + P(6) + P(lO) + P(14) + . .. ., 

The general type is thus 

<::>0 

2: P(j=J+k' K) = Prob J ï = J (mod K)} - W(J 1 K) , 
k=O t 

(8) 

with J = 0, 1, 2, ... , K-l 

K may be called the period (or module), whereas J can be taken as a phase, 
as it depends on the initial conditions. In this notation the sums evaluated in (7) 
are denoted by 

Prob (j even) = W(O 12) and 

Pro b (j 0 d d) = W (1 1 2) 

A more use fui form of (7) would be 

• -Ll- 1 {~ t.L i ~ (_ {_L ) i ) 
Prob (1 even) = e \- . 2" L:: -.-, + L ~-'- ~ 

j=O 1· j=O i ~ j 

Whereas cill terms with i even in the curly bracket appear twice, those with 
j odd cancel, which proves the formula. 

(71) 

A decisive hint con now be obtained by observing that the signs in the two sums 
of (7.1

) may be i~terprete.d in terms of the two roots x
k 

of equation (4), namely 

as x~ = 1 and x~ = (_1)1, respectively. 
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ft might be worthwhile, therefore, to consider similor sums with roots From (4) 
for a general value of K, thus expressions of the form 

S(JIK) ~ ~ xj-J.I--l
j +2 )-J. ~i 

j=O 0 i ~ j 1 i . 

~ ~ i K-l j-J 
== L -,-, ~ x k 

i=O l ' k=O 

Whereas (7 1
) con now be written as 

-\--'-' 
Prob (j even) = T . S(O 12) , 

+ ..• +"'" j-J L x K_1 
IJ-i 

'--• 1 
1 • 

we might 0150 expect that the two sums mentioned above could be expressed 

(9) 

by meons of 5(013) and 5(214) , respectively, but this has first to be shown, 

1 n order to do th is, let us now have a closer look at the second sum in (9), 
ln the simple case K=2 this is just 

~ j-J _ j-J j-J _ (2 
~O x k - x 0 + x 1 - î 0 

for 
Il 

j=J 
i .1 J 

For a general value of K, these sums correspond to the columns in Table 1, 
where use has been made of the simpl ifications resulting From the fact that 
(n = integer) 

xi = x . k , x n ' K+k = x k 
and x = x = 1 

k 1 • o K 

Table 1 - The ff' . i-J coe IClents x
k 

i j-J=O 2 3 K-l K K+l 

k=O 1 x x x x x 
0 0 0 0 0 

xl x
2 

x
3 

' x
K

_
1 x l 

2 x
2 

x4 x6 
x

K
_

2 
x

2 

K-l 

sums: K 0 o o o K o 
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As con be seen from this table, the elements in one column (and also in one row) 
in general do not contain ail the K roots x

k 
' but only those of a subgroup. 

ln this case, th~y ail appear d times, a !; the order of the subgroup is K/d. 
However, this fact will present no inconvenience for the further reasoning. 

The sums of the roots as they appear in (9) are readily evaluated by observing 
that they form a geometric series, thus 

K~l x',-J K ... l k 
L = 2 x',_J 
k=O k k=O 

f K' Xo 

-= K 
} 1 - xi -J 

L 1 - x· J ,-
as indicated in Table 1. 

= K for j=J (mod K) 

= 0 Il ilJ (mod K) 

By using the property that (10) vanishes for ail values i which belong to 

(10) 

a different residue class than J, the partial Poisson sum (8) can also be written 
as 

W(J 1 K) 
= ~ 0-J +s K . e _ P--= 'XJ iJ.. , 

s=O (J+sK) ~ ~ iT 
_Il , 1 

= e r - . K ' S (J 1 K) 

This answers the question raised after (9). 

On the other hand, S (J 1 K) from (9) con be expressed as 

K:.l -J ~ (\..J..xk)j K-l -J ~xk 
S (J 1 K) = 2: x :2 --- = 2: x ' e 

k=O k j=O j! k=O k 

Inserting this into (11) yields as our final formula (with 0 L J ~ K-l) 

_ 1 K-l -J ~ x k 
W(JIK) = e ~.- 2: x 'e 

K k;-O k 
, 

with W(J 1 K) defined by (8). 

( 11) 

(9 1
) 

(12 ) 
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As a computer in general cannot handle directly ~omplex quantities, it may 
be advantageous to express (12) in a somewhat different form. According to (5) 
the roots x

k 
c.an be written os 

' \-f k 
x

k 
= e 

we then get readily 

with 

xi:
J = cos(J 4J k) - i . sin(J '1\) and 

!u'(xk -1) l- ï 

e = exp · !-L- (cos \r k - 1 + i . sin ~ k)J 
-1J-(l-cOHf )r -

= e k Lcosq-t-· sin <.f J + i . sin( r--' sin \.f k)J 

A term in the sum (12) corresponds therefore to 

Gos(J Lf\) - i . sin(J .\{\)] . [COS((L' sin *k) 

+ i • sin(f-t-· sin '-.p k)] . 
For the corresponding complex conjugote solution x

k
' , which is assumed ta be 

not real and therefore different from x
k 

(thus k' neither 0 nor K!2). 

we con obviousl y just replace 41 k' by - 'i\ in the above expression. The sum 

for a pair of complex conjugate solutions is in (12) 

-J /-L(xk-l) -J /L(x k ,-1) 
x k . e + x k ' • e 

Whereas the contribution from k=O (with x =1) alwoys exists and simply amaunts 
to 0 

~ (x -1) 
o -J x . e 

o 
= , 

the term corresponding to k=K/2 (i.e. x
k 
= -1) only exists for K even and 

then is 

x k J . e ~ (x k - 1) = (_ 1) J . e -2 t-L 
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After some simple rearrangements, the general fo·rmula (12) con now be written 
in the following form which lends itself more easily to a computer evaluation 

1 {' J -2\-A:-W(J 1 K) = K 1 + (K-2~ -1). (-1) . e . 

+ sin(J 'f'k) . sin(jLsin 4'k)] }. (13) 

where d'l ~ [ [K/2] ] is the largest integer below K/2 and ifI k = k • 2 ïï/K . 

The factor 

K-2 ~ -1 = 1. G + (-1) Kl = { 1 
2 L J 0 

for K even 
Il K odd 

restricts the contribution from x
k 

= -1 to the case where K Îs eve n. 

Some explicit expressions for W(J 1 K) are given in Table 2. A simple computer 
program which calculates W(J 1 K) for any count rate (L and arbitrary choice 
of K and J < K on the basis of equation (13) is avail~ble upon request. 

For J=O the formula (13) simplifies to 

1 - -2f.-C ~ -\--l(l-cos\fk) -
W(OIK)=- 1 +(K-2'x-1)'e . +2 L e 'cos(~'sin~k) .(13') 

K k=l 

One can also verify that indeed 

K-1 
2: W(J 1 K) = 1 
J=O 

for any K. (14) 



K J 

o 

2 0 

3 0 

2 

4 0 

-21.A.. +e 

1 -2/Jv 
- e 

9 

K • W{J 1 K) 

( 3, ,) ( ~L.f3 ) 1 + 2 • exp - 2" r- . cos 2 

3 ï ~~ j3 fJ.- ./3 ~ 
1 - exp( - 2" I-L) Lcos( --2 -) - /3 . sin{ 2 )J 

1 - exp(- ~!-L) rcos( f.A- v3 ) + /3 . sin( ~ v'3l 
2 L 2 2 .J 

-2 pJ 2 -u . + e . + • e \ - • cos ~.Jv 

1 - e-2
j.N + 2 • e-1--L· sin V-

2 1 + e -2 ~ - 2 • e - f.J--. cos ~ 

3 
-U,.; 

• e' • sin ,U..J , 
00 

Table 2 - Formulae for the Poisson modulo-sums W(J 1 K) = 2: P(J + kK), 
_ u., . k=O 

with P(j) = e ' • /->t.'j i ~ , for the four lowest values of K. 
\ 

As a numerical check let us compare some values obtained by (13) with those 
we get by summing the corresponding individual Poisson probabilities as they 
are taken from a table with 6 decimals [S] • 
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For ~=2 and K = 2 to 6, for instance, we get the following: 

K J W(J 1 K) K J W(J 1 K) 

2 0 0.509 158 5 0 O. 171 463 
1 0.490842 1 0.282 707 

2 0.274 109 
3 0 0.328 004 3 O. 181 306 

1 0.364370 4 0.090 414 
2 0.307626 

6 0 0.147366 
4 0 0.226419 1 0.274 108 

1 0.306 951 2 0.271 530 
2 0.282 739 3 O. 180 638 
3 O. 183 891 4 0.090262 

5 0.036 096 

These values are in complete agreement wÎth the su ms formed by the individual 
values taken from [5J . 

The following limiting values are also worth noting: 

lim W(JIK)= 
IJ- -~ 0 

lim W(JIK) = 1/K . 
LL -)<:>0 

As an example, the distributions W (J 1 K) for K = 4 are plotted in Fig. 2 
as a function of the mean value u.., • 

\ 

4. Realization of a modulo counter 

(15) 

Generally speaking, the practical construction of such a counter is 
guide d by the appl ication made previously for th e case 1< = 2, wh e neve r 
this is possibl e L 1] • In particular, both the original and tha de laye d seri e s 
of pulses command a modulo K counte r, e ach of which in turn acts on a se ries 
of gates (denoted by circ les) . The state of these gate s Îs periodically explored 
by a train of pulses from an oscillator (with frequency v) which can reach 
a given "output ll only if the corresponding two gates they have to pass are 
both 1I 0pen ll. For K = 3, one might therefore first imagine an arrangement 
similor to the one sketched in Fig. 3. For higher values of K, however, the 
set-up would soon become prohibitive as the total number of gates needed 
here equals K(K+1). 



W (J 14) 
1 

0.75 

0.50 

0.25 
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\ 

Figure 2 - The four theoretical probabilities W(J 14) for a Poisson process 
with count rate 9 • The mean value fL = ~ . S is proportional 
to the experimental delay $ . 
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Figure 3 - Schematic diagram for a "complete" correlation measurement with K=3. 

The gates are open only if the corresponding scale of K is in the position 
indicated by the number in the circles. The three counters at the right indicate 
the number of times (N J) that the oscillator pulses found the two scales of K 

differing by J, which means that J (mod K = 3) pulses had arrived in the time 
interval S . 

ln such a "complete" arrangement, one specifie path (i.e. the corresponding 
two gates) would always be open for any given oscillator pulse which is 
therefore registered by one of the K counters at the output. After a measuring 
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time t , the ratio 

N o 
Tf (J 1 K) = ----L 

1J . t ' 
J = 0, l, .. 0, K-1 , 

would then approach the probability for observing J(mod K) events in the 
given time 8 . 

It is 0150 possible, of course, to deduce From the experimental frequencies 1T 
the correlation function as it has been defined in (1) by simply forming 

or, since R will be complex in general, 

and 

2:lT (J 1 K) . cos(J . 2;(- ) 
J 

The empirical function (17) may then be compared with the corresponding 
theoretical shape 

K-l 
R (th) (S) = 2: W (J 1 K) 

K J=O 
• x J 

For a Poisson process and the lowest values of K, this con be shown to be 

R~th) (S) = exp [-2 V] , 

= exp 1-~ ( - - i. -;- 3 fi'-J 
l... 2 2 

R~h) (b) = exp [ - \1-(1 - n] , 
with {.-L = J . S ,for b ~ 0 

However, it seems more natural here to conside_r directly the measured real 
quant i ti es j((J 1 K) as a function of the delay 8 since they con be readily 
compared with the calculated values W(J 1 K) 0 ln particular, any significant 

( 16) 

( 17) 

(17 1
) 

( 18) 

( 19) 
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difference would be indicative of a deviation of the process under study from 
a purely Poissonian one. Besides, such a comparison cah be performed for 
any spe cifie value of j. Instead of the previous "complete l! measure me nt, 
whe re ail K values 'j1'(j 1 K) needed for forming th e e mpi ri cal correlation 
function,according to (17), ore obtained, one such quantity is now sufficient. 
ln this case, the experimental set-up, os sketched in Fig. 3, con be 
considerably simpl ified. Furthermore, os two "rea 1 izations" such os, for example, 

X • x*. 
j+j 1 

and 

both correspond to the same state x j , os con be seen from (30 1
), it is obvious 

that for reasons of symmetry 011 th~ K possible positions of the initial counter 
(here i or k) will give the same contribution to]l(J 1 K). This allows us to use 
on experimental arrangement which is not only much simpler, but also more 
flexible, os con be seen from Fig - 4. 

inco 

pul 

ming 
1 delay $ l -

ses 1 1 
iJ I II 

scale scale 
of K of K 

1 1 

t t 
1 1 

oscillator 

> 

Figure 4 - Simpl ified schematic arrangement for measuring 
the probabil ity 1t(J 1 K)_ 

n
j 

As just mentioned, the choice of j is irrelevant; it is only the difference J 
for the two gates which has a physical meaning. As for J, one might prefer 
the value for which the probability W(j 1 K) is highest. On the other hand, 
J = 0 could also be a good choice os the corresponding value W(O 1 K) which 
is used for comparison has in general the simplest form (compare 13 1

). 1 n any 
case, the empirical probabil ity ']T(J 1 K) is given by 

'Tf (J 1 K) = K· n J (20) 
.) lJ·t ' 

where l.J. is the oscillator frequency and t the measuring time. 
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Instead of checking at a given moment the original and the delayed process, 
as suggested in Fig. 3, it is also possible to get the same information by 
controlling the original pulse series at two different times, delaying thus 
the oscillator pulse before it passes the second ga te . This metho d, which has 
several practical advantages, especially if shift re g iste rs are use d for producing 
the delay, is sketched in Fig. 5. and will be use d fo r the expe rimentat' checks 
now under woy. 

incoming 
scola of K 

1 .> 
pulses 

~ 
1 

f- - - - --'-- --
- ~ 

1 

0 oscillator 0) delay s·"' ~ > > nJ 

Figure 5 - Final proposai for the experimental arrangement 
to measure 'TrU 1 K) • 

The measured values Jr(J 1 K), again given by (20), are now determined for 
a number of delays èj and for a fixed value of J (e.g. 0). On the other 
hand, a direct measurement of the incoming pulses yields its mean count 
rate \l • As the "beginning" of a time interval ~ is determined by an 

J tot 
oscillator test pulse and thus randomly chosen with respect to the process to be 
analyzed, the pulses orriving within (; form an equilibrium process, where 
the a ve rage number (--0 oJ e ve nts is known to be strictly proportional to the 
measuring time (e.g. [6J, q. 23). The chosen delays therefore correspond 
to the means ~. = p . ~. a nd the theoretical probabil ities W(J 1 K) can 

1 tot 1 

be calculated for each ~ .• 
1 

But how should these data now be interpreted to obtain useful information 
about afterpulses? ln the case where the quantities TtU 1 K) and W(J 1 K) agree 
for ail the measured points (within the experimental uncertainties, of course), 
we can conclude that the ptocess studied does not differ from a pure Poisson 
process. This means here in particular that there is no indication for the 
presence of afterpulses (of the order K-1). 

However, if the differences between the corresponding pairs of values "ïI(J 1 K) 
and W{J 1 K) ars significant, the conclusion is in general less straightforward 
and demands a more careful analysis. Nevertheless, the interpretation is again 
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simple for a Poisson process (with original rate 5' ), where a certain fraction e 
of the events are followed by (exactly) K-l afterpulses*. Then 

r -
y tot = ft Ll + (K-l) eJ . (21) 

Let us assume the effective measuring time S to be sufficiently long compared 
to the average d istance between the main pulse and its afterpulses 50 that 
in general they ail will arrive in the same tÎme interval b (edge effect neglected, 
see appendix B of [1 j). As 011 the groups of K e vents (i .e. main pulse and 
afterpulses) are not IIseen" by a modulo K counter, the measured probabilities 
rC(J 1 K) only agree wi th the calculated values W(J 1 K), if these are based 
on a reduced count rate 

s> fi t = ? (l - a) = Ç> -K·e·o 
j to t ) , (22) 

which corresponds to the best fit to the measured data. A significant difference 
between 0 and of' thus allows one to determine the count rate due to 

J tot S It 
the (K-l )-fold afterpulses (or of e). 

ln practice, more complicated situations may exist; for example, the assumption 
of an original Poisson process might not be justified, or afterpulses of various 
order K could be produced. 0 ne might expect such a modulo K arrangement 
to be normally selective enough to pick out a compone nt, the contributions 
from KI f K being la rge ly ave raged out. However, this could only be asserted 
on the basis of a more careful and detailed analysis. Such a study would also give 
a fjrm ground for estimati ng the accuracy of th is method. 
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