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A complex modulo K counter

Jsrg W. Muller

1. Introduction

This report describes an attempt to generalize a previous suggestion [l]
for distinguishing between single and paired events to the case of multiple
pulses. Although this problem is at present probably only of minor practical
importance, it has been occasionally touched upon, especially in the context
of afterpulses, but the traditional methods do not lend themselves easily to
a convenient treatment (see for instance EZJ). The present approach is based
on a rather straightforward extension of the correlation function to more than
two states, As an experimental realization should not pose any special problems,
it seemed worthwhile to sketch briefly the basic ideas. Useful applications,
for instance for quantitative checking purposes, might be found later.

2. Choice of the states

If the development in time of a stationary stochastic process is described
by a function x(t), the corresponding autocorrelation function is defined by
the expectation

r(S) = €{x) - xtt- 81} M
We recall that in general R exhibits conjugate symmetry, i.e.
R(-8) = R*(§) . (2)

This means that the real part of R is an even function of & , and the imaginary
part is odd. In particular, the correlation function is thus symmetric for x(t) real.

Up to now, x(t) has been a real function which could only take the two values
+1 and -1, say [3] . Our first problem is to find an appropriate generalization
for more than two states. Their corresponding values x(t) will now be denoted
by the discrete states X 1 with k=1, 2, ..., K. For physical reasons

we require that R not depend on the initial state (at PP ), but only on the
development of the process during the time interval & , as the origin of time



is chosen at random and should be irrelevant in a stationary process. Thus

. xﬁz = q function of (k] - k2) 5 (3a)

and we shall demand in particular that R(0) =1,

i.e. xk'xi = 1 for any state k . (3b)

These conditions can be fulfilled by choosing for the states the K solutions of

the equation
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These roots of unity, as is well known, can be represented in the complex plane
(cf. Fig. 1) and are
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Figure | - Roots of (4) in the

complex .p|ane For the sake of convenience,
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X instead of Xy r both of which

are ohviously equal to 1. Since ‘\Ok =k- LPI , according to (5), we can write
X, T Xy (6)

We thus see that the solutions x, of (4) form a cyclic group of order K, with
) yclic group

Xy as the generating element. We note in passing that if K is a prime number,

any other element x, could have been used as well as a "primitive root".

I
In general, howaver, the powers of x, will not generate the full group,
l



but only a subgroup, the order of which is K/d, if d denotes the largest
common divisor of K and | . For other general properties of cyclic groups
we refer to any book on algebra (for instance [4]).

As xE = Xg equation (3b') can now be easily generalized to
k, -k
Nl B 172 _ :

with k = k] - k2 (mod K) ,

fulfilling thereby the requirement of (3a) that R only depend on the difference

of the final and initial states. The effect of the modulo notation, which generalizes
the concept of divisibility, is simply that all those numbers k now belong to

the same residue class k', for which k-k' can be divided by K.

3. Modulo-probabilities for a Poisson process

The mere fact that a generalized function x(t) with K states X, can be

constructed, and that a corresponding (in general complex) correlation function
R(S) thus exists with properties which agree with what we expect, is by no means
a sufficient guarantee for its usefulness. In addition, we have to demand that
such states can be actually "realized" and measured, and that this information
can be extracted and interpreted, i.e. compared with theoretical expectation
which is based on some realistic model for the process under study. Let us first
tackle the last problem and defer the experimental aspects for later.

As was done previously for the simpler case (with K=2), which will be used as

a guide-line whenever possible, the basic stochastic process is supposed to be
Poissonian with count rate ¢ . One of the main problems we were faced with

was the evaluation of the sums for all the even or all the odd numbers of events
for an expectation j& = ¢ - & . If the probability for observing exactly | events
in the interval § s

: [
PG = e —Plb—l- ; (6)

this requires an evaluation of the sums
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Prob (j even) = E P(2s) = e H’E »’2--)— = @ e cosh
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and (7)
(¥ 25+]
H = T e _HI H‘ = -}J.
Prob (j odd) sf:j (2s+1) g 2er1) | e sinh o ,

respectively.

Although these closed forms look quite attractive, they are not very useful for
finding the generalization we are looking for. What we now need are infinite
sums of Poisson probabilities which are e.g. of the form

P(0) + P(3) + P(6) + P(9) + ...
or P(2) + P(6) + P(10) + P(14) + ... .,

The general type is thus

a
> P(j=J+k*K) = Prob{j=J (mod K)} = WUIK) (8)
k=0 L '

with J=0,1, 2, ..., K-1
K may be called the period (or module), whereas J can be taken as a phase,

as it depends on the initial conditions. In this notation the sums evaluated in (7)
are denoted by

Il

W(O12) and
W(i12) .

Prob (j even)
Prob (j odd)

1

A more useful form of (7) would be

o0
Prob (j even) = e M. 2{\/— o l (7"
i=0 - i

Whereas all terms with j even in the curly bracket appear twice, those with
j odd cancel, which proves the formula.

A decisive hint can now be obtained by observing that the signs in the two sums
of (7) may be mferprefed in terms of the two roots X of equation (4), namely

as xo =1 and x] = (-])I , respectively.



It might be worthwhile, therefore, to consider similar sums with roots from (4)
for a general value of K, thus expressions of the form

(o=} . i : i i i
_ -3 pl < el = B
5(J|K),__._oxo i5+Zx] j.+”°+ZxK"‘ -
1= | |
w JBK=] .
=§__‘f_‘ XLJ, (9)
i=0 I+ k=0

Whereas (7') can now be written as

b
Prob (j even) = _e_z_ «5(012) ,

we might also expect that the two sums mentioned above could be expressed
by means of S(013) and S(214) , respectively, but this has first to be shown.

In order to do this, let us now have a closer look at the second sum in (9).
In the simple case K=2 this is just

zx i-J =(2 for =1
2 "k " ] 10 " (A2

For a general value of K, these sums correspond to the columns in Table 1,
where use has been made of the simplifications resulting from the fact that
(n = integer)

X = Xepos xn-K+k=XI< and xo=xK=l

Table 1 - The coefficients x'—J

ii—J=0 ] 2 3 |<-1»k K K+1
k=0 1 x  x x 1 x
LT X %y xg X | x)
20 1 xy  x,  xg Ricwm 1 X,
K-1i 1wy 1 %9 X3 X1 1 Kie 1
sums: K 0 0 0 37 & 0 K A ;




As can be seen from this table, the elements in one column (and also in one row)
in general do not contain all the K roots x, , but only those of a subgroup.

In this case, they all appear d times, as the order of the subgroup is K/d.
However, this fact will present no inconvenience for the further reasoning.

The sums of the roots as they appear in (9) are readily evaluated by observing
that they form a geometric series, thus

K for j=J (mod K)

' (10)

—
I

0 " A (mod K)

ey
A
x
o
I

as indicated in Table 1.

By using the proparty that (10) vanishes for all values j which belong to

a different residue class than J, the partial Poisson sum (8) can also be written
as

OQ J+sK _ o] | - K_-_] .
W(JIK)=EM e*’“=§if—‘-e“>_x|'<J
S= J+$K) i:o | - k=0
- e'“‘-'E-S(JlK) . (11)
This answers the question raised after (9).
On the other hand, S(JIK) from (9) can be expressed as
K-1 oo (| xk)i K=1 oy X
SUIK) = > «x } ———= 2 & W8 ; (9')
k=0 =0 I k=0

Inserting this into (11) yields as our final formula (with 0 £ J & K-1)

K-1 K x K-1 ‘.L(x -1)
, - 1 -J k | -J k
WUJIK) = e " X~ e = = > x " -e g (12)
= Kizo &

with W(J 1K) defined by (8).
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As a computer in general cannot handle directly complex quantities, it may
be advantageous to express (12) in a somewhat different form. According to (5)
the roots X, can be written as

iay
z k

X ,  Wwith ~\()k=k—2%-;

we then get readily

x;J = cos(J k?k) ~i-sin(J l{)k) and
‘u’(xk"])

e

exptwcos G- Fitsing k)J

e

~(V=cosy ) -
. I_ltcos(ltb . sinlaPk) %« sin(k_:»b- sin ¢ k)J

A term in the sum (12) corresponds therefore to

o Bl =) =p(l-cos@,) -~ - -
ka e K= . 'fOS(JLPk) - i-sin(J ’\Pk)_! J Lms([L' sin ‘»?k)

+ i +sin({4 - sin _Pk):l

For the corresponding complex conjugate solution Xpr s which is assumed to be
not real and therefore different from X1 (thus k' neither 0 nor K/2).
we can obviously just replace ({)k, by - “‘Pk in the above expression. The sum

for a pair of complex conjugate solutions is in (12)

-] .ef-j’(xk-]) =] (u*'(xkf-])

X\ + X0 "€
- (1-cos q?k) - o7
= e +2 |cos(J LPk) » cos(sin k{lk) + sin(J q)k) * sin(sin '\Pk)‘] i
Whereas the contribution from k=0 (with x0=1) always exists and simply amounts
to
=] H‘/(XO']) B
x ~re =1 ,
)

the term corresponding to k=K/2 (i.e. xk=-l) only exists for K even and
then is
(J:(xk-l)

-e.

-J

X = (—])'J . e-2FL



After some simple rearrangements, the general formula (12) can now be written
in the following form which lends itself more easily to a computer evaluation

W TK) =~|l-{1 £ (K=23t 1) - (=1)F - e72¥

Y = U(l-cos '“Pk)'_

+2k>;_—_‘ e Lcos(J ipk) » cos( Lt * sin '\pk)
+ sin(J q)k) *sin(fLsin \,pk)]}, (13)
where 3¢ = ]: [K/Z] ] is the largest integer below K/2 and 9, = k*2W/K .
The factor
=_1_|— K=f>1 for K even
K2 -1 =3 :_”('”;l 19 " K odd
restricts the contribution from X) = -1 to the case where K is even.

Some explicit expressions for W(J | K) are given in Table 2. A simple computer
program which calculates W(J | K) for any count rate (+ and arbitrary choice
of K and J < K on the basis of equation (13) is available upon request.

For J=0 the formula (13) simplifies to

® - pu(l-cos )
W(OIK)=-‘E 1 + (K-2% -l)-e—2%+2§ e P * cos( &+ sin k?k) (139
k=1

One can also verify that indeed

K-1
> WUIK) = 1 for any K. (14)
J=0



K J K+ W(JIK)

1 9 ]

2 0 | 1+e72™
T

3 0 1+2 « exp(=-5 &) (‘u?)
1 1 - exp(—%!«l—) I—COS( “;/5) - \/3 " sin( M;/-g)
2 l-exp(-g-H/) I: M\/—)"'\/—' sin(— \2/3—‘

=

4 0 1 +e-2‘UJ +2 e ™ cos oV

'el' 'sinv\,
2 1 -ZIJJ-Z e_p"cosu,
3 l-e-zu'-Z'e_l‘ub-si'n.lLb

Table 2 - Formulae for the Poisson modulo-sums W({J 1K) = z P(J + kK),
: k=0
with P(j) = e M. ‘H,I/i !, for the four lowest values of K.

As a numerical check let us compare some values obtained by (13) with those
we get by summing the corresponding individual Poisson probabilities as they
are taken from a table with 6 decimals | 5]
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For ¢+ =2 and K =2 to 6, for instance, we get the following:

K J | wyik K J W(J 1K)
2 0 | 0.509 158 5 0 | 0.171 463
1| 0.490 842 1 | 0.282 707
2 | 0.274109

3 0 | 0.328004 3 | 0.181306
1 | 0.364370 4 | 0.090 414

2 | 0.307 626

6 0 | 0.147366
4 0 | 0.226 419 1 | 0.274108
1 | 0.306 951 2 | 0.271 530
2 | 0.282 739 3 | 0.180638

3 | 0.183 891 4 | 0,090 262
5 | 0.036 096

These values are in complete agreement with the sums formed by the individual
values taken from [5] :

The following limiting values are also worth noting:

lim WUIK) = S
0.4
w—90 4
(15)
lim WU1K) = 1/K
U, —y oo

As an example, the distributions W(J 1K) for K = 4 are plotted in Fig. 2
as a function of the mean value (o .

4. Realization of a modulo counter

Generally speaking, the practical construction of such a counter is
guided by the application made previously for the case K =2, whenever
this is possible L]] . In particular, both the original and the delayed series
of pulses command a modulo K counter, each of which in turn acts on a series
of gates (denoted by circles). The state of these gates is periodically explored
by a train of pulses from an oscillator (with frequency V) which can reach
a given “output” only if the corresponding two gates they have to pass are
both "open"., For K =3, one might therefore first imagine an arrangement
similar to the one sketched in Fig. 3. For higher values of K, however, the
set-up would soon become prohibitive as the total number of gates needed
here equals K(K+1).
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of K=3 of K =3
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Figure 3 - Schematic diagram for a "complete" correlation measurement with K=3.

The gates are open only if the corresponding scale of K is in the position
indicated by the number in the circles. The three counters at the right indicate
the number of times (NJ) that the oscillator pulses found the two scales of K

differing by J, which means that J (mod K = 3) pulses had arrived in the time
interval

In such a "complete" arrangement, one specific path (i.e. the corresponding
two gates) would always be open for any given oscillator pulse which is
therefore registered by one of the K counters at the output. After a measuring
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time t, the ratio

N,

ﬂ“(uK):-V—}—t ; 1J=0, 1, «uu, K-1, (16)

would then approach the probability for observing J(mod K) events in the
given time

It is also possible, of course, to deduce from the experimental frequencies 7T
the correlation function as it has been defined in (1) by simply forming

O")

R§< Ez"‘f(JlK 2y s (17)

or, since R will be complex in general,

Re{RLexp) (5)} = z']T(JIK) * cos(J * g%[)
J

(17"
|m{Rf<e"P) (8)} = JET((JIK) * sin(J -Z—E-r)
The empirical function (17) may then be compared with the corresponding
theoretical shape
K-1
Rgh)(S) = > WUIK) » x| (18)
J=0
For a Poisson process and the lowest values of K, this can be shown to be
Rgh) (g) = exp{ -2 M‘l ,
(th _ (3. A3
R3 )(5) = E€Xp "Pl(f—ls-v-i--_’ (]9)

Rgh) (8 ) = exp L— P«(] - i)J ’

with LL=5>'8,For & >0.

However, it seems more natural here to consider directly the measured real
quantities 0 (J 1 K) as a function of the delay O since they can be readily
compared with the calculated values W(J1K). In particular, any significant
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difference would be indicative of a deviation of the process under study from

a purely Poissonian one. Besides, such a comparison cah be performed for

any specific value of J. Instead of the previous "complete" measurement,

where all K values JT(J I K) needed for forming the empirical correlation
function,according to (17), are obtained, one such quantity is now sufficient.

In this case, the experimental set-up, as sketched in Fig. 3, can be
considerably simplified. Furthermore, as two "realizations" such as, for example,

© X and X

3 *
i+ k+J *k

both correspond to the same state Xy, as can be seen from (3a'), it is obvious

that for reasons of symmetry all the K possible positions of the initial counter
(here j or k) will give the same contribution to TT(J 1 K). This allows us to use
an experimental arrangement which is not only much simpler, but also more
flexible, as can be seen from Fig. 4.

incoming [ r————
> delay &
pulses

scale scale
of K of K

oscillator /“\ ;
A

"
Figure 4 - Simplified schematic arrangement for measuring
the probability Tc(J1K).
As just mentioned, the choice of | is irrelevant; it is only the difference J

for the two gates which has a physical meaning. As for J, one might prefer
the value for which the probability W(J 1K) is highest. On the other hand,
J =0 could also be a good choice as the corresponding value W(0I K) which
is used for comparison has in general the simplest form (compare 13'). In any
case, the empirical probability 71 (J 1K) is given by

K-nJ

Ve 1

TUIK) = (20)

where u is the oscillator frequency and t the measuring time.
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Instead of checking at a given moment the original and the delayed process,

as suggested in Fig. 3, it is also possible to get the same information by
controlling the original pulse series at two different times, delaying thus

the oscillator pulse before it passes the second gate. This method, which has
several practical advantages, especially if shift registers are used for producing
the delay, is sketched in Fig. 5. and will be used for the experimental checks
now under way.

incomin e
- 9 scale of K

T -
pulses

|
oscillator S
O ) delay 0 L~ ")

Figure 5 - Final proposal for the experimental arrangement
to measure T(J 1K),

The measured values J{(J 1K), again given by (20), are now determined for
a number of delays S; and for a fixed value of J (e.g. 0). On the other
hand, a direct measurement of the incoming pulses yields its mean count

" M ° . n . . S . °
rate . . As the "beginning" of a time interval ¢ is determined by an

oscillator test pulse and thus randomly chosen with respect to the process to be
analyzed, the pulses arriving within & form an equilibrium process, where
the average number | of events is known to be strictly proportional to the
measuring time (e.g. [6] » €q. 23). The chosen delays therefore correspond

to the means P’i = ?tof . 5i and the theoretical probabilities W(J1K) can

be calculated for each ;Si .

But how should these data now be interpreted to obtain useful information
about afterpulses? In the case where the quantities TTUIK) and W I K) agree
for all the measured points (within the experimental uncertainties, of course),
we can conclude that the process studied does not differ from a pure Poisson
process. This means here in particular that there is no indication for the
presence of afterpulses (of the order K-1).

However, if the differences between the corresponding pairs of values q7(J 1 K)
and W(J 1K) are significant, the conclusion is in general less straightforward
and demands a more careful analysis. Nevertheless, the interpretation is again
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simple for a Poisson process (with original rate ¢ ), where a certain fraction 8
of the events are followed by (exactly) K-1 afterpulses*. Then

- g1+ kDo) . @)

S}i'of

Let us assume the effective measuring time & to be sufficiently long compared

to the average distance between the main pulse and its afterpulses so that

in general they all will arrive in the same time interval $ (edge effect neglected,
see appendix B of [lj) As all the groups of K events (i.e. main pulse and
afterpulses) are not "seen" by a modulo K counter, the measured probabilities
TT(J 1K) only agree with the calculated values W(J |1 K), if these are based

on a reduced count rate

ep = 90 -0) = g -K-08-¢ (22)

which corresponds to the best fit to the measured data. A significant difference
between o vt and 9 it thus allows one to determine the count rate due to

the (K-1)-fold afterpulses (or of 8).

In practice, more complicated situations may exist; for example, the assumption
of an original Poisson process might not be justified, or afterpulses of various
order K could be produced. One might expect such a modulo K arrangement

to be normally selective enough to pick out a component, the contributions

from K'# K being largely averaged out. However, this could only be asserted

on the basis of a more careful and detailed analysis. Such a study would also give
a firm ground for estimating the accuracy of this method.
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