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1. Introduction 

The fact thot the probabi 1 ity of observing an even or an odd number 
of counts in a given time interval contains useful information about the eventual 
presence of doubled events (primary and seconda ry pulse's) has recentl.l' ~een 
e xpl o i tedtodevelop a quantitative method for meosurin g ofterpulses il i in .. ... 
a series of events which is originally of the Po issbnian type. This ideo has then 
been extënde'd to multiple afterpulses [2J ' as .o,general woy _was found 
to calculate the corresponding modulo-sums 

W(J J K)= Prob {i = J (mod K1 ' with O~, J < K , (1) 

if the probability for observing exactly events is given by the Poisson law 

, 

where ~ =f> t is the expected mean number within a time interval t. 
:: , 

As the me t hod used for de term ining the modulo-sums W(J 1 K) seemed to be 
quite ge ne ral, one might apply it to othe r d isqete distributions as weil. The 
i niti al choic e was not quite obvious as the re are many c~ndidate s (geometric*), 
bi nomi a l, hy perge ome tr ic, Pélya, etc.). FinaUy, in view of :its fundamental 
importance (from a practical as weil as theoretical point' of view) the binomial 
distribution has been selected os an example. This choice has also been favoured 
by the hope to use the result for a check6f the Poisson case treated previously 
and to derive from it some general formulae for m6dulo-sums of binomial 
coefficients. The last problem will be treated in a subsequent report, 

*) see the P.ppendix 
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2. The binomial case 

Let us assume that the probability for observing i events (in a given time) 
is described by the law of the bihomial distribution (q == 1 - p) 

B (0 = (~I) pi q n- i , 
p,n 

with i = 0, 1,2, H., n, (2) 

t 

where (~) = ~n ") is a binomial coefficient giving the number of 
1 1: \n-I . 

combinations of n things taken i at a time. 

The general idea used in . [2J to evaluate for the probability distribution (1) the 

so-called moduio-sums Wu. (J 1 K), wh ich are defined by 
\ 

QO 

W~.{J 1 K) = 2: P~(J + sK) , 
s=O 

with 0 ~ J < K , 

was to replace the single sum in (3) by 

bO K-l . 
\Ai (J 1 K) = J.. ""'" ~ I-J. P (,) V\~ K :L-2 x k IJ.., 1 1 

1=0 k=O ~ 

where the quantities x
k 

are the K roots of the equation 

xK = 1 • 

That (3) and (4) are identical is assured by the fact that according to Eq. (10) 
in [2J 

K-l 
~ j-J 
2.. x k 
k=O 

{K for i = J (mod K) 

= 10 Il j f J (mod K) 

Therefore in the binomial case, i.e. with the probability distribution (2), 
the expression corresponding to (4) is now 

'-")oc K-l. 
W (J 1 K) = K

1 ~ B (;) ~ x
k
l -

J 

p,n j=O p,n k=O 

n • • K-l . J 
= "'- (n) 1 n- I ~ 1-K L . P q L- x k j=O 1 k=O 

(3) 

(4) 

(5) 
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K-1 n 
= J-.- ":::- x -J " (~,) (p' xk)i qn-i K L.. k L 

k=O j=O 

1 K -1 -J n 
= K 2: x k (p' x k + q) 

k=O 

si nce (~) = 0 fo ri> n • 
1 

, 

Before going further we can make use of the symmetry of the . binomial 
distribution (2). It is weil known that 

B (0) = (~) i (1- )n- i 
p, n 1 1 P P 

=( n.)(1_p)n - i p i =B
1 

(n-j) 
n-t -p, n 

(6) 

(7) 

This relation si-mplystates that for a probability of "success" p in a·ny single trial, 
the probabil ity of exactly j "successes" in n . independent trials is identical 
with the ' probCtbility .of exactly n-j "failures",if the probability of "failure" 
in any single trial is l-p. 

We therefore obtain with (3) for the modulo-sums the corresponding identity 
. ' . ... ' 

\X) 

W (J 1 K) = :2 B (J + sK) 
p, n s=o p, n 

<.:>0 .. 1 

= 'L B (n - .J - sK) = 
s=O l-p,n . . 

where J' = .n - J (rnod K). 

The main task now consists in transformin g (6) into a mo re easily ma na geab le 
explicit·form where the complex solutions x

k 
are e l i mi nated o We re me mber 

(8) 

that a similar rearrangement had also to be perfo rmed in the Poisso nia n case [ 2] 

'3. Some rearrahgements 

As the solution of (5) is 

x
k 

= exp (i f' k) , (9) 

with '''V k =k·~7, k=O, 1, "0' K-l, 

.. ..... - _._- - - - -
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we get for the first factor in (6) 

x~J = cos (J • ~ k) - i • sin (J . \fi k) 

For the second factor we first write 

PX k + q = 1 + p(x k -1) = 1 + p(cos ~k + i sin cf k - 1) 

- à k + i bk ' 

where a k = 1 - p (1 - cos \(Jk) 

and bk = p' sin 'fk • 

With this- no-tatio~n (6) now ~eads 

K-l , ' 
1 

~ -J n , K, W ' (J K) = L x
k 

('GJ
k 

+ i b
k

) . 
, PIn k=O 

(10) 

( 11 ) 

(6') 

usually 
To simplify the notation, we shall/~rop , the parameters pond. n )nwhat follows, 
thus writing ~j(J 1 K) for W (J 1 K) wheneverambiguïties are uni ikely. 

. , PIn 

To evaluate the sum (6') it is practical to separate the real from the ' complex 
solutions x

k
• The contribution from ~_ = 0 is always present and partièularly 

simple. We get with the definition!i (11) 

-J 'n ~ . ï n x (a + i b ) . = 1 ! 1 - p(l-cos ~o) + ip ' ''sin \.p '! = l , 
o 0 0 0.J 

since Xo = 1 and ''\'! 0 = 0 

(12 ) 

Anothef re.at solution of (5) 9nly exists if K is even. Then for k = K/2 wfi; have 
x ,; ... 'l 'and . (Û " = î'l . Therefore k " , '1' k " . . 

a
k 

+ ib
k 

= 1 - p(1 - cos' f k) + ip • sin f..f\ = 1 - 2p , 

hence 
-J n J n 

x
k 

(a
k 

+ i b
k

) = (-1) (1 - 2p) • (13 ) 

Ali the other solutions x
k 

(for K /,/ 3) appear in the form of complex-conjugate 

pairs (for k and k', say), where l-f' k' = - ifl k , hence Ok' = ok' ;but. bk, = - b
k

, 
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The contribution to the sum (6') from such a pair is therefore 

-J n -J n 
x

k 
(a

k 
+ j b

k
) + x

k
' (a

k
, + i b

k
,) (14) 

= ~os(J t.fl k) - j sin(J Cf k)] (a k + i bk)n + Gos(J f k) + i sin(J 4' k)] (a k - i bk)n 

= cos 'i\. J {(Ok + i bk)n + (ok - i bk) n} + i . sin 'j\. J t(ok - i bk)n - (ok + i bk)n} 

To form the powers in the curly brackets, it would be possible to apply directly 
the corresponding binomial expansions. This, however, leads rapidly to rather 
complicated expressions and it seems more practical to proceed in a slightly 
different manner. Let us put 

a
k 

= r
k

' lX k 

bk = rk ' ~k 

and 

where r
k 

is chosen so that '::1., ~ + ~~ == 1. Thus 

or, after inserting (11), 

2 . 
r
k 

= 1 - 2p(1-p) (l-cos*k) • 

But then a
k 

and b
k 

Can also be readily expressed in polar coordinates by 

(se e Fig. 1 j 

imaginary axis 

real axis 

-- 1 -

Fig. 1. - Transformation of a
k 

' b
k 

to polar coordinates r
k 

' y k 

(15) 

( 16) 
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a
k 

= rk'cosYk and 

b
k 

= r
k 
. 

sin Yk , 

where 
sin Yk b

k 
tg Yk == = , 

cos Yk a
k 

or with (11) 

crc t g ( :~ ) crc tg [1 P • sin,!, k ] 
(17) Yk = == 

- p (l-cos 'f k) 
. 

Because of the periodicity of the trigonometric functions, their inverse functions 
are indefinitely many-valued. A word of caution may therefore be in place here. 
B~convention, the principal value of arc tg x, wrîtte n a s Arc tg x, lies between 
- Il /2 and Tt/2, and it is this value whi c h is c alcu lated for e xample by an 
automatic computer. This practice, howe ver , is no t i n a gree ment with the 
requirements of our present problem. It is easy to see from Fig. 1 that 

For a complex sol ution x
k 

' we have 0 < k < K/2. He nce x
k 

1 ies in the 

upper hal f of the complex plane and sin \fi k > 0, therefore also b
k 

> O. 

If we design the principal value by 

[ 

p'sin~k 
Arc tg " _ g 

1 - p(l-cos + k) k 1 

the correct choice for Yk is (see Fig. 2) 

) gk for gk > 0 

Yk == , 

l gk +1l Il 
gk < 0 

The sign of 9k is determined by 1 - p(1-cos tfk) , the denominator of (18). 

(18) 

( 19) 
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y = arc tg x 
-~~ .~ ~.:...- : - , -----.-------------

ft!2· - _. - - . - _. 

x 

----- -----------
-----------

Fig. 2. - Schematic plot of the multiple-valued function arc tg x. The 1 ine 
passing through HIe 'origin gives t.he principal value; our choice is the solid line. 

With t~e new variables r
k 

and Yk ,we get for the powers in (14), by using the 
expansion 

the expressions 

n 
S = 2 + r k 

and 
i 

S .. = 2i r~ """ i n n-2j-1 
L.. (-1) (2'+1)(cosYk) 
j=O 1 

, 

with 

and 

= ff!!JlJ' . 
L. L.2 

We note that formally both sums may be extended to infinity 0+ = i_ = ~) 
sin c e (n) = 0 fo r s > n • 

s 

By comparing S + and S with the multiple -angle formulae for trigonometric 

functions with multiple arguments to powers of trigonometric functions, 
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they turn out to be simply 

S + = 2 r~ • cos(n y k) 1 

S = 2i r~ • sin(n Yk) 
(20 

The contribution of a poir of complex-conjugate solutions (x
k 

1 x
k

,), previously 
expressed by (14), may therefore be stated as 

2 n +' ',"0 (2') n , cos (0 • r • cos n Yi' sin "f ' .. 1 r • sin n y 
1 kJ k k kJ k k 

= 2 r~ (cos tfkJ • cos n Yk + sin t{)kJ • sin n Yk) 

= 2 r~ • cos (~ kJ - n Yk) • (21) 

This shows that the sum (6) can finally be written in the simpler form 

1 ) J n ~ n ")It W(J IK) = K I I + (K-2d{ -1) (-1) • (t - 2p) + 2 k~rk ? cos (n Yk - tf'k.J j 1 (22a) 

where 
cp . = i' 21\ /K , 

1 
~ 

r
k 

and Yk are given ~ (16) ond (1,m, respectively, and 

4t = [ [K/2j ] is the largest integer below K/2, 

Therefore 

K - 2 de 

( 

1 = ) 1 for K eve n 
lO Il K odd. 

Since Yk appears in (22a) as the argument of a cosine, it is 0150 possible 

to resolve the ambiguity of its value in a way which may be slightly more 
practical thon the procedure indicated by (19). As a matter of fact, (220) can 
be written likewise in the form 

W(J 1 K) 

,}{ 

= ~ ~) 1 + (K .. 2 ~ - 1) (- 1 ) J , (1 - 2 p) n + 2 L (r k s k) n , cos (n 9 k .. lf\ . J >.1 1 

1..... k=l J 
(22b) 

where gk is the principal value (18) and 

L: 
for gk> :J 

sk = sgn gk -
Il 

gk < 0 
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Either of the formulae (22) is the general expression for the modulo-sum of 
a binomial distribution (with given parameters n and p). They look much 1 ike 
the corresponding formula (Eq. (13) in [2l- ) for the Poisson process and their 
exact relation will be studied in se-:ctio,n 5. 

4. Some expl ic it formulae 

To illustrate the usefulness of the general formula (22), the expressions for 
the lowest values K will be briefly discussed in what follows. 

For the trivial Case K = 1, Eq. (5) has only the solution x = 1 and therefore 
o 

Yv'(011) = 1 , 

confirming the normalization of the binomial probabilities (2). 

The case K = 2 deserves much more interest. S ince here Xo = 1 and xl = -1, 
equation (22) gives 

1 - l 
VV(J 12) 

1 -J n 
= 2" 2: x k ~ (x k - 1) + 1 , 

k=O ~ 

thus W(OI2) = 1 r nl 2" 1 + (1 - 2p) J and 

W(1/2) = 1 ' nJ 2" ~ - (1 - 2p) 

ln particular, thîs yields therefore for p = 1/2 

W(OI2) = W(1/2) = 1/2, for any n • 

We note that the result (25) could also be used as the basis of a new 
statistical test which should be rather simïlar to the well-known sign-test 

(23) 

(24) 

(25) 

(see for example [3): the "null hypothesîs" p = 1/2 will be che cke d by 
comparing the number of tîmes the outcome of a re pe ated binom ial me asu rement 
is even or odd, the permitted deviations of the ir ratio from un it y bei ng de duced 
from the binomial law with p = 0.5 for a given value of n. 

For K = 3 we have ~ = 1 a nd ~; 1 = 211/3. Hence 

2 
r = 1 1 - 2p(l-p) (1-cos Cfl) = 1 - 3p(1-p) 

and 
- p · sin ~ l l 

= J# _1 - p(l - cos 'f Il J 
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We therefore obtai n. _ _ 

W(J 13) = ~ {i ~ 2 ~-3pd-p1 0/2 :',,1>,('; Yi -J • 211 /31 
where p .f3 ,-.. 

Yl = Arc tg (2 _ 3p) + U(3p-2) °lL 

also 
The case K, :;::4 iy'reodilY ' solved~ sin~e '>t = 1 (lnd . Cfl = Jï!2 yield 

I-2p(1-p) and 
r • 
p~sin<Rl 

= 
l-p(l-coSl.()l) 

= ~ 
l-p 

, 

hence 1'(" J } 
W(J 14) = 4 il + (-1) (1_2p)n ~ 2 r~ 0 cos(n Yl - J :1T/2)' 1 

where YI = P.rc tg (G) 0 

If written more explicitly, this corresponds to 

1 ( ;-...., /2 . } 
W (0 t 4) = 4" 11 + (1 -2 p) n + 2 Il -2 p ( 1 -.p) 1 n 0 cos (, n YI) , 

L _ 

1 r'" -/2 .-
\A/(114) = 4" ~1 - (l-2p)n+2 ~-2p(1-p~J" osîn(ny1 ),t , 

Vv(2j4) 
1 \ n;- -1 n/2 " = 4" 11 + (1-2p) - 2 ~ ... ,2p(1-p)~ 0 cos(n Yl )} and 

= * 11 - (1_2p)n _ 2 G~2p(1-p)-I' n/2. sin(n Yl )J 
, L _ .J 

The expressions of W(J 1 K) for 1 ( K ~ 8 are summarïzed in Table 1. 

(26) 

(27) 

(27') 

The probabil·ities W(J 1 K) 'reach a limiting value in a simïlar way 'as they did . 
in the case of a Poisson process oProvided that n »K and p 0 q , 0, .weobtai.n 

lim V/(J 1 K) = l/K 1 for any J 1 

n-)oo 

whereas 

lim W(J/K) = SO,J ' for any n and K. 
p--) 0 

(28) 

(29) 



Table 1. Formulae for the binomial modulo-sums W(J 1 K), with 0 .{. J < K ~ 8 

K K·w(JIK) 

2 J )n 1+(-1) ·(1-2p 

311+2(rs)n·cos(ng-J·2Ti/3) 

J n n / ) 4 1 1 + (-1) • (1 - 2p) + 2 r • cos (ng - J • îT 2 

2 
5 1 1 + 2 ~ (rksk)n. cos (ng

k 
- Jk • 2lf /5) 

k=l 

with 

2 
r = 1 - 3p(1-p), 

9 = A rc tg (p v'3 ) 2-3p , 

s - ( - sgn 2-3p). 

r = 1 - 2p(1-p) , 

{ 

2 

9 = Arc tg (---P..-
1 

) 
-p 

2 
r
k 

= 1 - 2p(1-p) 0 - cos (k· 2i1/5)] , 

9 = Arc t 1 p • 5in (k • 2Tt /5) ! kg, 
1 - pD-cos (k • 211/5)J 

51 = l, 52 = sgn t ,1 - p Q+cos (11"/5)J t . 





K 

6 

Ta ble 1 (co nt Id) 

K • W(J 1 K) 

2 
1 + (_1)J . (1_2p)n + 2 2: (rksk}n. cos(ng

k 
- Jk • 'iTj3) 

k=l 

3 
7 1 1 + 2 2: (rksk)n. cos (ng

k 
- Jk • 2TI/7) 

k=l 

8 
3 

1 + (_1)J. (1_2p)n + 2:2 (rksk)n. cos (ng
k 

- Jk 'TL/4) 
k=l 

with 

r
2 

= 1 - (2k-1)p(1-p) , 

k [v'3 ] 
gk = Arc tg 2 -12k-l)p , 

51 = l, 52 =sgn (2-3p). 

2 . 
r
k 

= 1 - 2p(1-p) [1 - cos (k • 2 "/7)J 

_ At! p . 5 i n (k . 21T!7) ~ gk - rc 9 , 
1 - p Cl-cos (k • 211/7}J 

51 == l, 52 ,3 = sgn ~ 1 - p Q-cos (k' 2'iT/7)] t . 
2 

r k = 1 - 2 p (1 - p) [1 + (k - 2) / V2 ] ' 

g2 = Arc tg ( 1 ~p) , 

9 = Arc tg f: P J 1 3 ' , _12. - p(k-2+ 12) 

51 = 52 = 1 , 

53 = sgn Q - p(l + 1/ V2}] . 

r-.) 





13 

However, the limit l/K may also be reached for a finite value n. Thus with 
anodd K, for example, (22) shows that this limitïng value is always obtained if 

where c k_ are' i~tegers. This condi~ion Can obviously be fulfiHed only by certain 
values cil p, if at ail. 

A computer program {in Fortran IV), based on (22b), has been written, which 
gives W(J 1 K) for any c~~.bination of J < K, p and ni it ·is available upon 
request. - . 

5. The. Poisson limit 

It is a ~ell-known fact that the Poisson law can be obtained as ÇI limiting 
Case from the binomial distribution when p -) 0 and n -> (y.:) , while the 
expectation 

~ = p' n remains finite ', 

It shouid be pos~ible, therefore, ta obt~in . f~om the general . formula (22) for 
the binomial the corresponding expression for a Poisson process. As this result 
has been derived independently before, it would serve as a useful check 
on the present and on the previous calculations .• 

(30) 

The corresponding three limiting processes in (22) ore easy to perform. They are 

a) lim(1-2p)n = lim(1.,.2~)·n·~ e-2tJ-' , 
n n -~ !>'.) n -)~ 

1• 2n l' ~~1 2/.:.L(1 - )-,~ n - -2u-(1-cos ({) 
1 m r k = 1 m - 7 -co s 'f k = e. \.. "\ k , 

n -:')é.lO n~oO . __ 
b) 

and ~ 1 im ( . Arc 'g [ t; . sin 4'k - ( 

n -~OQl _ ~ -~(l-cos lf k)_ j 
c) 1 im n y k 

n-~oo 

,.t . si n lf k ) 
= lim{n" n.1 = ~'sinlf'k 
n -;;> ~~ 

.. 
t • 

H thèse results cire inserted into (22), we obtain 

1 r J -21..L 
W(JIK)=i< L1+(K-2>t-1)(-1) 'e ~ 

de 
+ 2 2: 

k=l 

-t~( (l-cos l~\) l 
e ·cos(t-t·sin t..f -If ' ) ( , 

k kJ J 
which is identical with equation (13) in [2J for the Poisson process. 

(31 a) 

(31 b) 

(31 c) 

(32) 
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p;PPEND.IX 
. '. . 

J·I ... · 

Geometrie modulo-sums' 

The determination of modulo-sums for the ge'ometric probability la"'; is 
particularly simple and the y can be easily f9und directly, i.e. without using 
the general method sketched in section 2. : ; . , . 

The geometric p.robabil ity distributio.n is g~vej:\ by 

'-1 
GO) = p'q 1 , with j=1,2,3 , ... , 

where 0 < p < 1 'and 9 ~ 1 - p • 

G(j) can be interpreted as the probability that the first "success" arrives at 
trial number i, supposing that P, the probabil ity of "success", is the same 
for each trial (Jack of. memory). 1 n determining the modulo-sums which are 
defined by . 

W(J 1 K) = Prob {i = J (mod K)} , . ',' ., ., '. 

(A 1) 

we have to be careful to exclude the :case 'i=ù ' (o's it d~es hot make sense here)*). 
This can be achieved by now choosing J in the range 1 ~ J ~ K 1 and 
we obtain : ''' ' . ' ,. 

W(J t K) = 2. G(j=J+sK) 
s=O. 

(Xl 

> J+sK-l J-1 -.:::::- sK 
= p.q =p.q Lq 

s s=O 

J - l = p' q 

It is readily verified that 

K 
L W(J 1 K) = 1 , 

J=l 

as one would expect. 

K 
- q 

J-1 = p (1-p) 
1 _ (l_p)K 

(A2) 

(A3) 

The corresponding calculations for the remaining discrete probability distributions 
seem to be somewhat more involved, but no real attempt has yet been made 
nor is it planned. 

*) Formally, this annoyance could have been avoided by choosing instead of i 
a variable il = i - 1, which corresponds to the number of "fail ures " before 
the first "success". 
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