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Binomial modulo=sums

Jorg W. Muller

1. Introduction

The fact that the probability of observing an even or an odd number
of counts in a given time interval contains useful information about the eventual
presence of doubled events (primary and secondary pulses) has recently been
exploited to develop a quantn‘c’rlve method for measuring afterpulses | 17 in
a series of events which is originally of the Poissonian type. This ideg hos then
been extended to multiple afterpulses L2_j , as.d-general way was found
to calculate the corresponding modulo=-sums

W(J|K) = Prob {i = J(mod K)b , with 0¢J <K, (1)
o
if the probability for observing exactly | events is given by the Poisson law
k..l)i

. -
AU

where tu =9t is the expected mean number within a time interval t.

As the method used for determining the modulo-sums W(J | K) seemed to be

quite general, one might apply it to other discrete distributions as well. The
initial choice was not quite obvious as there are many candidates (geomefri’c*),
binomial, hypergeometric, Polya, etc.). Finally, in view of.its fundamental
importance (from a practical as well as theoretical point of view) the binomial
distribution has been selected as an example ., This choice has also been favoured
by the hope to use the result for a check-of the Poisson case treated previously
and to derive from it some general formulae for modulo=-sums of binomial
coefficients. The last problem will be treated in a subsequent report,

*) see the Appendix



2. The binomial case

Let us assume that the probability for observing | events (in a given time)
is described by the law of the binomial distribution (q =1 - p)

o o~ (Dy i n=j b ¥ =
Bp,n(l) (i)p q 5 with =0, 1,2, ..., n, 2)

|
where (r;) = ﬁ%:;)—, is a binomial coefficient giving the number of

combinations of n things taken | at a time.

The general idea used in ZZ] to evaluate for the probability distribution (1) the

so-called modulo-sums W,, (J |K), which are defined by

oQ
W, U [K) = ZOPP/(J+5K) ,  with 0<J<K, (3)
=

was to replace the single sum in (3) by

1 2K
WK = = > > XL P (4)
i=0 k:o (
where the quantities x) are the K roots of the equation
=1, (5)

That (3) and (4) are identical is assured by the fact that according to Eq. (19)
in:2]

L2
K{:l X.I,_J i {K for | =J (mod K)
S0k Lo v A (mod K) .

Therefore in the binomial case, i.e. with the probability distribution (2),
the expression corresponding to (4) is now

S k-1 5 )
WoOUlK) =4+ S B () =
p.n l K I.;'_‘) Plnl go "k



=_1-|i’:'] ‘J"ﬂ‘(n)(; jl
= ,=‘>‘o i’ Pk
IK-] -J n
='I?Zoxk (prx) *a), (6)

since (?)=0 for | > n.

Before going further we can make use of the symmetry of the binomial
distribution (2). It is well known that

o= My o
Bp,n(') (i)p (1-p)

_,n ERLEI BN s :
(an) Qop)" ol =8y oei) )
This relation simply states rhaf for a p_robabilify of "success" p in any single trial,
the probability of exactly | "successes" in n . independent trials is identical
with the probablltfy of exactly n=-j "failures", if the probabllufy of "failure"
in any single trial is 1-p.

We therefore obtain with (3) for thé modulo-sums the corresponding identity

2o
B (J + sK)

=0 P/"

W UK

%— _ n—,J-s?K)_=W]

O Kb e
PN FaL
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where J' =n = J (mod K),

The main task now consists in transforming (6) into a more easily manageable
explicit-form where the complex solutions x| are eliminated. We remember

that a similar rearrangement had also to be performed in the Foissonian case [2] .

3. Some rearrahgements

As the solution of (5) is

X T exp (i "-|’7'k) 5 (9)



we get for the first factor in (6)

X, = cos (J'kpk)-i'sin (J'kPk) . (10)
For the second factor we first write

pxk+q = ] +p(xk-l) = 1 + p(cos k{?k+isih s % 1)
, R A1

Eak"'ibk

where a, = I -p (1 =cos ‘Pk)
and bk=p'sin ’\Pk ;

With this notation (6) now veads

O K-1 .
. . s : -J n
W - = - : l
K V\M(Jlm go x.~ la, +1b)" . (6"
usuall

To simplify the notation, we shall/drop the parameters p and. n in what follows,
thus writing W(JIK) for W n(J|K) whenever ambiguities are unlikely.
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To evaluate the sum (6') it is practical to separate the real from the complex
solutions X) " The contribution from k = 0 is always present and particularly

simple. We get with the definitions (11)

“J . Y | : . . '0-. 2 _i

X (ao + i bo)n = 1 !E - p(l-cos gpo) + ip "'sin k()oj "=, (12)
since x =1 and ¢ =0,

o )

Another real solution of (5) only exists if K is even. Then for k = K/2 we have
X) =" 1 and. &Vk =T . Therefore - : e

a tib, = 1-5p(l - cos %)Mpwin p, =1-2p,
hence

-J ; n J

x.o (o, +ib)" = (1) (1 -2p)" . (13)
All the other solutions X\ (for K}, 3) appear in the form of complex-conjugate

pairs (for k and k', say), where Y ==& hence A = ap s but b , = - by, -



The contribution to the sum (6') from such a pair is therefore

- -J
X (o ¥ k'

= [cos(J kpk) -isinJy )_’ (o *+ i b|<

.b) + x +ib,W (14)

cos(J\f’ ) +isin(Jy )_l(c -|b)

=cosp, J{( k+nb) + (a —ibk)n}+i-sin¥?kd{(ok-ibk)n-(ok+ibk)n}.

To form the powers in the curly brackets, it would be possible to apply directly
the corresponding binomial expansions. This, however, leads rapidly to rather
complicated expressions and it seems more practical to proceed in a slightly
different manner. Let us put

a =1 *X and
k k k (15)
B = T P
where r, is chosen so that '3(2 + [32 = 1. Thus
k k k ’
2 . .2 . 2..9..83 _ 2
op, B by S R B = o
or, after inserting (11),
2 ,
by = 1 - 2p(1-p) (]-cos%'k) " (16)

But then a, and b, can also be readily expressed in polar coordinates by
(see Fig. 1)

imaginary axis

|
|
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Fig. 1.- Transformation of a s b|< to polar coordinates e Y



a, = roeesy, and

bk = rk'sin‘/k 4

sin Yy bk
where tg Y T o 2 —-—,
cos Yy, ap
or with (11)
bk p *sin l()k
Yk arc Q(qk arc fg L] - p(]-COS\Pk) ( ;

Because of the periodicity of the trigonometric functions, their inverse functions
are indefinitely many-valued. A word of caution may therefore be in place here.
By convention, the principal value of arc tg x, written as Arc tg x, lies between
-1/2 and T/2, and it is this value which is calculated for example by an
automatic computer. This practice, however, is not in agreement with the
requirements of our present problem. It is easy to see from Fig. 1 that

For a complex solution X, 1 we have 9 < k < K/2. Hence X). lies in the

upper half of the complex plane and sin Py > 0, therefore also bk > D3

If we design the principal value by

B p* sin \{)k —.
Arc tg 1 -p(]"COS (;k) I = gk ’ (18)

—

the correct choice for Y) s (see Fig. 2)

- -(gk for 9, > 0
k lg +’ﬁ" n < 0
" %

(19)

The sign of 9 is determined by 1 - p(l-cos aek) , the denominator of (18).



Y = arc tg x ,
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Fig. 2.~ Schematic plot of the multiple-valued function arc tg x. The line
passing through the origin gives the principal value; our choice is the solid line.

With the new variables r, and Y| .we get for the powers in (14), by using the

k
expansion
n :
L ng n=f ., . i
ay 10" = (e Gt
the expressions
|+
5, = ('I) ( ) (Gos Yk) (élny ) 4
and
: — o 2j+1
S, = 2i g (2 _H)(cos yk) * (sin Yk) =,
with - N
Si = (°k+lbk) i(ok-lbk)
and

5 &

owm | ﬂ} 1 - [ n ]
S N D R 5
We note that formally both sums may be extended to infinity (j,_ = j_= o)

since (:)=0For s > n.

By comparing S and S_ with the multiple-angle formulae for trigonometric

functions with multiple arguments to powers of trigonometric functions,



they turn out to be simply

- n.
S+ = 2 i cos(n yk) 2 -

S = 2i rE » sin(n Yk) ‘

The contribution of a pair of complex-conjugate solutions (xk y xk,), previously
expressed by (14), may therefore be stated as

cosq)kJ'2 rE' cosnyk"'i-sinf.?kJ'(-?i) rE'sinnyk

= 2 rE (costkJ 'cosnyk+sin(PkJ * sin nyk)

n

2r ccos(@,  -ny) . (21)

Il

This shows that the sum (6) can finally be written in the simpler form

I J & . \
}gl + (K=23¢ =1) (=1)" « (1 —2p)n 32 Zrkrcos(n Y = '»Pk.J?i ,(22q)

WU K) = —
L k=1

where

(-Pi = i‘2Tr/K ’

9
"l and Y| are given by (16) ond (18), respectively, and

= -—

® = [ LK/ZJ | is the largest integer below K/2,

Therefore

K-22% -1 = )( for K even
{

1
0 " Kodd,

Since Y) appears in (22q) as the argument of a cosine, it is also possible

to resolve the ambiguity of its value in a way which may be slightly more
practical than the procedure indicated by (19), As a matter of fact, (22a) can
be written likewise in the form

1| J n i
WUIK) = £ 41 +(K-23¢ -1) (-1)7 + (1 = 2p)" +2 >

n . )
2 (rksk) + cos(n 9} —Wk'J}'{ p

(22b)
where g s the principal value (18) and

{l for gk> 2
s, = sgng, =

k k

-1 " gk<o



Either of the formulae (22) is the general expression for the modulo-sum of

a binomial distribution (with given parameters n and p). They look much like
the corresponding formula (Eq. (13) in [2;) for the Poisson process and their
exact relation will be studied in section

4, Some explicit formulae

To illustrate the usefulness of the general formula (22), the expressions for
the lowest values K will be briefly discussed in what follows.

For the trivial case K =1, Eq. (5) has only the solution X, = 1 and therefore
w@fn =1, (23)
confirming the normalization of the binomial probabilities (2).

The case K =2 deserves much more interest. Since here X, = 1 and Xy = -1,
equation (22) gives

wW(J|2) = %éo x-k'J Ep(xk -1+ l:! ",
thus W(0]2) = %'1 f (1= 2p)"] and
(24)
w(l|2) = %ﬂ = (1 -2p)":l ;
In particular, this yields therefore for p = 1/2
W(0|l2) = w(]|2) = 1/2, for any n . (25)

We note that the result (25) could also be used as the basis of a new

statistical test which should be rather similar to the well-known sign-test

(see for example [3] ): the "null hypothesis" p = 1/2 will be checked by
comparing the number of times the outcome of a repeated binomial measurement
is even or odd, the permitted deviations of their ratio from unity being deduced
from the binomial law with p =90.5 for a given value of n.

For K=3 we have =1 and ¥y =29 /3. Hence

] - 3p(|-p)

> = 1-2p(1-p) (I-cos )

3
and tg Y1 I = p(l-cos t{)]) - 3p) .

*sin ! 1
P J\/] "=//fé(-2-&£—
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We there Fore obtom

- : o3 % .,
V\(JIS) = = %l +2 l_ 3p(l-p)J cos(n y]-J 21[/3) ¢ (26)
J
where Y, = Arc tg (23?\/-::%) + U(3p-2) T
also '
The case K =4 i¢readily solved, smce % =1 and T J1/2 yield
r? =1- 2p(|-p) and
=
pesin
gy, = e
1 1 - p(l-cos k()') 1-p
hence 1 r. -
WJl4) = )Ll + (= l) (l-2p) +2 r cos(n Yy - i 1(/2)} . (27)

where Y, = Arc tg (-'—%J-) .

If written more explicitly, this corresponds to

W(0[4) = % {1 +(1-2p)" + 2 :—Zp(]—_p)— /2, costn fl)} #
W(l]4) = % §| = (agp® 43 P'|.-2p(]-p')- V2 _ intn yl)} ,
W(2|4) = % %l + (1-2p)" :-,2p(1_-p)_ 2 + cos(n 71)} and it
Vi(3]4) = -:I {1-(1-2p)" -2 1-2p(1-p) | /2 -sin(ny])} :

The expressions of W(J]K) for 1 £ K & 8 are summarized in Table 1.

The probabilities W(J|K) reach a limiting value in a similar way as they did -
in the case of a Poisson process. Provided that n >> K and p ' q # 0, we obtain

lim W(JlK) = 1/K, forany J, (28)
n—> o ;
whereas
lim WU|K) = 9y |, forany n and K. | (29)

p—>0 ’



Table 1. Formulae for the binomial modulo-sums W(J |K), with 0 {J <K £8

K-W(JI|K)

with

1 £{-1)" (1 - 2g)"

1+2(r )"+ cos (ng - J - 2T1/3)

12 (=0 <01 = 201 2 & weos ng = J * T2

N. cos (ngk - Jk - 2TT/5)

2
1+2 g] (rk .sk)

=1 -2p(1 -p) [1 = cos (k- 2T7/5)] ,
p*sin (k - 2T /5)
1-p E—cos (k 'Z'TT/S)]

= sgn zl - p [I+cos (’T/S)] z

= Arc tg

Lt






K- -W(UJ|K)

Table 1 (cont'd)

with

I+ (-1)"

3
]+2§(rs)n
=1 Kk

=l

2

- (1-2p)" + 2 2} (rsi)”
k=

3
- (1-2p)" + 2 k}} (rksk)n

: cos(ngk - Jk - T/3)

- cos (ngk - Jk2T/7)

* cos (ngk - Jk T /4)

e
:
-
:
o

—l—(2kl p(1-p) ,

/3
= Arc tg p(2k ) ‘y p

=sgn (2-3p) .

=] -2p1 p) [1 - cos (k*2T/7)]

p *sin(k + 270/7) %
l—p]—] -cos (k* 2H/7)]

2 _Sgnzl-pr cos (k* 2“/7)_]$

I

= Arc ’rg

=1 -2p(1- -p)[1+(k-2)/V2],

= Arc tg ( p)'

= Arc tg P 1
ﬁ p(k-2+v?2)|

= sgn [1 -p(]+]/\/_:]



s 0 gl
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However, the limit 1/K may also be reached for a finite value n. Thus with
anodd K, for example, (22) shows that this limiting value is always obtained if

n.gk = \PkJ = (2;k+!) ﬂzs ¥ Fo_r.all 1 kgn

where ¢, are integers. This condition can obviously be fulfilled only by certain
values okf p, if at all.

A computer program (in Fortran 1V), based on (22b), has been written, which

gives W(J |K) for any combination of J { K, p and n; it.is available upon
request. -

5. The Poisson limit

- Itisa well-known fact that the Poisson law can be obtained as a limiting
case from the binomial distribution when p —> 0 and n —> o, while the
expectation

H = p°n remains finite . (390)
It should be pos;‘iblé-, therefore, to oBrdin-Ffom the generdi_ férmulo _(22) fbr
the binomial the corresponding expression for a Poisson process. As this result
has been derived independently before, it would serve as a useful check

on the present and on the previous calculations.

The corresponding three limiting processes in (22) are easy to perform. They are

a)  lim (1=2p)" = lim (1 <2550 = o720, (31a)
n—>o0 n —>%9 n
= ah =
) lim 2" = lim | - 2 ocos @) | " = &2 Ime0s 0 (31b)
o k L n k
—>a n—>og _ _
and ( | L(-‘-L-”sin&P |
- P l n k .
c) ||mnyk = lim<{n*Arctg ,
n—>w n—>s0 LI -%(l—cos ‘-(k)fj
A\.L'Sin qzk _
== lim)&n'—n—‘——]—-—) = H/‘sian'k e (3]C)
n—> ¢
If these results are inserted into (22), we obtain
(
W(U|K) = KLLI + (K=23¢ 1) (-1)7 .72t
% -(l-cos ) )
+ 2 z e 5 * cos({L * sin W - L()kJ)(l . (32)
k=1

which is identical with equation (13) in [2] for the Poisson process.
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APPENDIX

Geometric modulo~-sums’

The determination of modulo-sums for the geometric probability law is
particularly simple and they can be easily Found dlrecfly, i.e. wufhouf using
the general method sketched in section 2.

The geometric probability distribution is given by

el = mrgl =1 with i=1,2, 3, wus, (A1)

where 0 { p <1 and g=1-p.

G(j) can be interpreted as the probability that the first "success" arrives at
trial number j, supposing that p, the probability of "success", is the same

for each trial (lack of memory). In determining the modulo-sums which are
defined by ‘

W(J’K) = Prob {| = J (mod K)} ¢
we have to be careful to exclude fhe case =0 (as it dees ok mike sense here)®.

This can be achieved by now choosmg J in the range 1 £ J &K, and
we obtain :

(ﬁ-
WUIK) = > G(j=J+sK)
s=0. '
Co
= z P’qJ+SK—] = z
- s=0
J-1
— p-qJ-l . ] K - E(]'P) K i (Az)
1 -q 1 - (1-p)

It is readily verified that

(A3)

~>

K
> W(I|K) =
J=1
as one would expect.

The corresponding calculations for the remaining discrete probability distributions
seem to be somewhat more involved, but no real attempt has yet been made
nor is it planned.

Y Formally, this annoyance could have been avoided by choosing instead of |
a variable j' =j -1, which corresponds to the number of "failures" before
the first "success".
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