
Report BIPÎ\'Î-72j7 

On the limiting behoviour of the interval density for an extended dead time 
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1. Introduction 

I-\n essential part of a recent semi-empirical method for determining the correction 
to the number of counts due to a non-ideal de ad time [1 J is based on the assumption 
that the interval density f(t) goes over into an exponential function for sufficiently 
large time intervals t. In order to render such a supposition more plausible, 
it seems desirable to show that this result holds for the two extreme cases of a 
dead time, namely the extended or the non-extended type. VVe always assume 
that the dead time has been inserted into a process of originally Poissonian nature 
with count rate 5' . 

The required property is only trivial for a non-extended de ad time, since here 

f(t) = y exp [- f (t - t,)] = J' exp(f'C) • e -.ft (1) 

is exactly an exponential (with the original count rate r ) for any t > 'C • For 
extended dead times, however, things are much less evident and in a recent 
attempt to tackle this problem i2l none of our three different approaches led 
to really convincing and unambig~ous results. But in the meantime - we hope 
at least - the arguments have been somewhat improved and considerably simpl ified 
so that it might be worthwhile to submit them to those who will be interested in 
such matters. Since our solutions are still far from being as clear as definite 
answers should be, further impro~ements or entirely new ways are certainly 
possible and would be welcome. 
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Two different approaches will be discussed in what follows. The first is based 
on the original interval density f(t), while the second starts with its integral 
transform ns). Different features are used for arriving at the results which 
supplement each other. 

2. Proof for the orig'inal density 

The general expression for the interval density with an extended dead time 't: 1 

when the rate of the original Poisson process was 0 , is given according te 
equation (21) of 13 ï by ! .. -

K 
f(t) = 2: /\k(t,L) , 

k=l 
(2) 
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where 

2 

~ (- 1) k -
l 

k ( _) k - 1 - k (Ji: 
Ak(t,"t) = U(t-k v' (k-l)! • f . t-k0 ~e}, 

K :. ~/ ej is the largest i nteger be low tir: 
è ...J 

and U is the unit step function. 

Derivation with respect to t yie Ids (f't = x) 

dA k _ (- l)k+l -kx 2 k-2 
dt = U(t - k l)' (k _ 2)! • e • f . (~t - kx) 

~HHH: ln order to be able to compare (3) with 

. .. 

(3) 

- n eX (- l)k+ 
1 

-kx 2 n l k-2 
Ak_1(t,1:) = -U(t-Lk-!J'C)'Y' (k_2)!·e -f ·(~t-Lk-l_x) 1 

we introduce a fictitious dead time 

k - 1 
1:;1 == k • 't" = 'L /y 

and put accordingly Xl = rt 1 1 thus 

k x = • Xl = Y • Xl 

k - 1 

This then leads to 

yx l 

Ak_1(t,"C) = - U(t - k .re/y). T ( 
_ 

1 )k+ 1 k 1 2 k 2 
• e - y x • 0 (t - kx 1 ) -~(""""k"";-;""2=)-:-! ) 

e yx I-kyx 1,+k'X ... · ( _ l )k+ l 2 1 k-2 
= - U (t - k TI) . f (k _ 2) 1 ~ f . (? t - kx ) 

But si nce the exponent 

k k k l 
yx 1 - kx 1 (y - 1) = k _ 1 Xl - kx' . (k _ 1 - 1) = k _ 1 x' - kx 1 • k _ 1 = J 

vanishes, we simply get 

U(t-kT 1
) 

U(t-kr-) 

However, asymptotico Il y k» 1 for t -) 00 , thus y = 1 and (;1 = '\ , 

and therefore 0150 in the same 1 imit 

(-4) 

(4 1
) 

-kx' . e 

(5) 

(6) 
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By summ ing over k we get 

~ Ak_l (t, 'r) = f(t) and 

We thus obtain asymptotically the differential equation 

the solution of which is 

lim f(t) = 
t -?>~ 

A 
o 

-yt . e 

(7) 

(8) 

(9) 

This gives the expected 1 imiting exponential behaviour where A is an undetermined 
o 

constant. 

3. Proof by he 1 p of the transform 

We still want to show that in the limit 

lim f(t) = 
t -7;X) 

A 
o 

-Pt • e 1 
1 

where f(t) is given by (1). For that purpose we form the new function 

g(t) = e fl·t • f(t) (10) 

and shall show that a finite, non-vanishing limitïng value 

1 im . g(t) = A 
t-?oo 0 

can-only result provided that 

Application of the well-known shift rule for Laplace transforms[ 4J gives 

.J (Olt -\ .,....,. 
9(S) == J..., te r . f(t)J = f{s - pl) 

By inserting the known form of the transform of the interval density (.1), which 
was given in equation (11) of [3 J as 

( 11) 

-v _ f 
f(s) - (s+o)c: 1 (12) 

g +s.e .J 

we obtain according to (11) 

P 
9(S) = 

J +(s.- fi). (S-f l +?) 
e 

l;, 
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By taking advantage of the Tauber theorem [4J in the form ~ 

lim g(t) = Iim S' 9(S) , 
t -7 ex> s ---7 00 

we get for the 1 imit 

lim g(t) 
t~oo 

= lim 
s -) 0 

s (... 
e 

( 13) 

But for s -~ 0 this expression can only lead to a finite value A if a factor s 
o 

can be split off from the square bracket, i.e. for 

. (" - 0')"0 ( - 1 2 2 f - fi. e)) • 1 + s v + 2" s --C + ... ) = s . B • 

This, in turn, requires that for any dead time T 

f = f' . e(f- f)"t" , 

thus f' = J> 

Then, it follows that 

A = lim g(t) = lim 
f . S 

= lim 
0 

t -7 <::>c\ 5 -;> 0 f -
SC· 5 (.. 

5-7 0 r e + 5 e 

(14) 

(15) 

p • S = f 
f ( -s L.) + ses L 1 - fL . 

(16) 
Accordingly, we conclude that an extrapolation of the asymptotic exponential 
distribution (or a linear extrapolation in the logarithmic plot) leads to an 
intersection' with the ordinate at the orrgÏ'n~t = 0 at the value 

A 
o 

4. Experimental checks 

By measuring the distribution of the time intervals following an extended dead time, 
we can check the 1 imiting behaviour of the density f(t). 

As an example such a measurement is shown in Fig. l.For a comparison with 
the theoretical curve, ratios of ordinates have to be taken sirice our experimental 
data are not normalized. According to equation (2), the density f(t) has in 
the range l.. < t < 2 Z- the constant value 

A 1 = f' e - fL. 
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Fig. 1: Experimental distribution of timc intervals f(t) 
for an extended de ad time T 
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The empirical interval distribution i'n Fig. 1 was obtained i.n 16 hours on a 
kicksorter. The relevant parameters for this run were 

f = (412 + 1) s-l l" 

"- ~ '[ -v 38% 
~ = (930 ~ 3)/-,-,s J 

time per channel: (2"0.00 + 0.05)~ • 

This gives for the theoretical values 

and 

A = 
o 1 - 9 L 

-1 
= (667.9 ~ 1.7) s 

-oc -1 
A, = ~ . e l = (280. 8 ~ 0.7) s , 

which have to be compared with the experimental quantities (counts per channel) 

0< = 68 000 ~ 500 , 
o 

c;I.. 1 = 28 000 + 50 • 

This can be easily performed by means of the ratios 

d lA 
o 0 

cl. lA 
1 1 

68 000 
= 667.9 = 101.8 + 0.8 and 

28 800 
= 280.8 = 102.6 + 0.4 

The closeness of these two ratios demonstrates that the value for the constant A 1 

as expected according to formula (16), is weil confirmed by the experimental 0 

data. 

Furthermore, the empirical value of JI l , i.e. the limiting slope of the experimental 
distributio~, drawn on a logarithmic sc.al~, has been determined in order to check 
if the density really tends towards an exponential with the true count rate ? 1 

as has to be expected on the basis of (9). 

The data of a similar experiment as illustrated in Fig. l, but with better statistics 
(within 64 h), with the parameters 

- ft'--'16% 
? = (411 + 1) s -1 }" 

'[ = (400 ~ 2) pL-s " 

were analyzed by two different methods, namely 
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a) least-squares fit of an exponential over 25 channeh each tÎme, 

b) differential determination of the derivative after smoothing of the 
original data, a procedure simi lar to the one used earlier in a' 

different context [5j • 

Thr:: numericcl results are 

- method a): 
-1 f' = (409.8~0.8)s , 

- method b): 
-1 fi = (411.5.:::0.5)s 

The agreement with r; is satisfactory. We Can therefore conclude that a de ad time 
i~ not capable of changing the exponential interval distribution at distances 
which ore large compared with the dead time, as one would have expected naively. 

VVe are much indebted to P. Bréonce and C. Veyradier for their efficient help 
with the measurements,as weil as to Dr. V.E. Lewis for his kind interest in the 
problems discuss'3d here. 
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