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1. Introduction 

ln the determination of absolute alpha-particle energies in a magnetic 
spectrograph the energy is obtained by extrapolating the high energy edge . 
of the alpha line to zero intensity (see, for example, ref. [lJ). The method 
consists of fitting to the experimental points a theoretical intensity distribution 

l proportional to (x - a)3/2 where x is the position on the photographic 
x 

plate and a is the intercepte The procedure used until now [2J has been 
to take l ,the measured number of alpha tracks per unit interval, subtract 

x 
from it the average background land transform the resultant quantity 

o 
l - l to the power 2/3. Then, using appropriate weights, a straight line 

x 0 2/3 
of the form x = a + b(I - 1) is fitted by the method of least-squares. 

x 0 

This procedure has the advantage that it leads to simple analytic expressions 

[2J for the intercept a and its variance 0-
2

• 
a 

The total number of measured tracks l follows a Poisson distribution 
2 x 

and hence its variance is given by CT = l • When setting error limits on 
x x 

this number, one commonly writes the best value as l + CT • However, 
x- x 

this does not reflect the asymmetry of the Poisson distribution for which 
one would expect asymmetric error limits. For large values of l ,this 

x 
asymmetry becomes quite small and can then be neglected, but in the region 
where we are actually performing the fit (i.e. at the high energy edge of 
the 0( -line), l approaches zero. 

x 

It would therefore seem that a more accurate extrapolation of the 
O<'-line to zero intensity would be obtained by considering the Poissonian 

nature of the process and the fact that the errors about the meàsured numbers 
of alpha tracks will be asymmetric. The technique:: of least-squares is unable 
to treat this case of asymmetric errors and so a procedure has been adopted 
here based on the principle of maximum likelihood. 



2. D eterm i na tio n 0 f Asymmetri c E rrors 

A treatment of the problem of determining confidence limits on rare 
events distributed according to the law of Poisson is given by van der 
Waerden [3J and we only quote here his results. 

If k is the observed number of events of a process following a Poisson 
distribution law, then the confidence limits on the value k are given by 

1 2 1 2 1/2 
À+ = k +2"g .:!:g(k+"4 g ) , (1) 

where À+ and À_ are the upper and lower confidence limits, respectively. 
The factor 9 determines the degree of confidence and is taken from a normal 
distribution. Thus, for example, 9 = 1 corresponds to confidence limits of 
about 68%. If the distribution were normal this would agree with the usual' 
standard deviation. 

For small values of k the limits of (1) differ considerably from those 
obtained by simply taking (J = v"k. A few values are given in the table 
below for comparison. The value of 9 is taken as unity. 

Table 1 

Error limits for small tota 1 counts (g = 1) 

Number of Lower 1 imit Upper limit (f = Ik 
counts (k) from (1) from (1) 

0 0.00 1. 00 0.00 
1 0.62 1.62 1.00 
2 1.00 2.00 1. 41 
3 1.30 2.30 1. 73 
4 1.56 2.56 2.00 
5 1.80 2.80 2.24 
6 2.00 3.00 2.45 
7 2.20 3.20 2.65 
8 2.37 3.37 2.83 
9 2.54 3.54 3.00 

10 2.70 3.70 3. 16 

20 4.00 5.00 4.47 

30 5.00 6.00 5.48 

40 5.84 6.'84 6.32 

The question now arises as to what is the best fit of our theoretical 
line shape to points with asymmetric errors. 
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3. Principle of Maximum Likelihood 

The method used in what follows is based on the principle of maximum 
likelihood. The measured points are designated by (x. , y.), where x. is 

l' 1 

3 

the position of the centre of the measured interval on the photographie plate, 
and y. is the number of tracks cou~ted (including background) in this interval. 

1 

We assume that there is no error in the x. , and that the error d istri bution in 
1 

the y. is Poissonian and thus given by , 
y. 

À. ' 1 - À. 
p(y. 1 t\.) = " e ' 

" y. , . 
À. is the (unknown) true va lue of which y. is a measure. , , 

If '.À. were known, we could calculate, using (2), the probability , 
of observing a certain number of tracks y .• However~ we have only the , 
measured quantity y. / and wish to use it to estimate À. by means of the , , 
inverse probability p( À.ly.) , for the distribution of the unknown true , , 
values À .• , 

This can be done by applying the method of Bayes [4J which gives 

p( À. 1 y.) = 
, 1 

p()...) p(y.j À.) , , , 
Q(j 

J p( i\.) p(y. I,L) d À. 
, , 1 1 

o 

Assuming constant a priori probabilities fOl the À. , the integral in 
the denominator of equation (3) is 1 

o<J Q() f y. -À. J p (y. I,U d À . 
,À. , , 

d ).. r (y. + 1) 1. = YT e = = l' , . i 1 y. , , 
" 

1 • 
0 0 

Therefore y. 
À.

1 -À 
p(À,.!y.) 

1 
p(y./À.) = e = 

, 1 y.1 , 1 
1. 

The density (4) has a maximum at À. = y .• The measured y. is , , , 
therefore the most probable value of ,À. and for each y. there belongs a 

l , . 

distribution in À. of the form of equation (4). 
1 

(2) 

(3) 

(4) 



.. 

If we now attempt to fit a family of curves to N points, each having 
y. characterized by equation (4), the best fit, by the principle of maximum 

1 

likelihood, will be obta·ined when the product P of the probabilities for 
each point À. is a maximum, i.e. when 

1 

N 

P = Tt p(,À..ly.) == a maximum. 
'-1 1 1 1-

This gives N 

N À.
Yi 

-À -~ )... N 
>..Yi 

. 1 1 
P TI 1 i 1= ïT i 

= e = e 
i=l 

y. , 
i=l 

y. , 
1 • 1 • 

= a maximum. 

Taking the logarithm this leads to 

N N N 
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(5) 

ln P = - 2: À. + ~ y. in À. - L: En(y.!) = a maximum. (6) 
. 1 1 . 1 1 1 '1--1 1 1= 1= 

To proceed further we must specify the family of curves which we wish 
to fit to the data. 

4. The form of the alpha line 

We write the theoretica 1 1 ine shape (near the h igh energy edge) for 
the alpha line in our ma g ne tic spectrograph in the following form (see [2J). 

À. = a(b - x.)3/2 + y • (7) 
1 1 0 

1 n th is equation y is the average background and a and b are 
o " . 

constants to be determined. The constant b corresponds to the poirlt on the 
plate at which the theoretical value À. becomes equal to background, and 

1 

it is this quantity which is used to calculate the alpha energy • 

. The form of equation (7) is chosen in order to avoid subtracting 
the background from the measured points and taking the 2/3 power of the 
resulting counts, both of which would distort the Poissonian distribution of 
the y .• The fit is performed directly to the measured data. 

1 

Substituting equotion (7) into equation (6) gives 

N 3/2 N ~ 3/2 J N -a:L(b-x.> -Ny +2y.tn a(b-x.} +y -2:€n(y.I)=amaximum. 
i=l 1 0 i=l 1 1 0 i=l l' 

(8) 



Differentiating (8) with respect to a and band setting the derivatives 
equal to zero, we obtain the two simultaneous equations 

N N . 3/2 
y.(b-x.) 

~ (b - x.)3/2 = 2: J J 

a(b :.. x.)3/2 + y i=1 1 .-1 I-
I 0 

N N 1/2 

(b _ x.) 1/2 
y.(h-x.) 

and 2 L J J 
= 3/2 

i=1 
1 

i=1 a (b - x.) + y 
1 0 

Equation (9a) is obtained by differentiating (8) with respect to a 
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(9a) 

(9b) 

and it is therefore the condition which, when fulfilled, gives the best value 
of a for b constant. Similarly, equation (9b) is obtained by differentiating 
(8) with respect to b, and its solution provides the best value of b for a 
constant. Unfortunately, there is no exact analytic solution, but equations (9) 
are readily solved numerically by means of a computer. One starts: with 
trial values of a and band by successive iterations a solution can be obtained 
to any desired degree of accuracy. 

5. Error Estimation 

Having obtained the best , value of the intercept b =, b . from (9), . 
we would like to estimate its error due to statistical fluctua?ions in the data. 
Unfortunately, equations (9) prove just as resistant 'to solution for (J"2 as 

the y do for b itself. However, the error in b may be estimated grap~ically 
by plotting distribution (5) as a function of b. The procedure is to fix a 
value of b, find the best value of a using equation (9a), calculate the set 
of À. using (7) and then calculate P from (5). Again, this is easily done 

1 

with a computer. The resultant probability density will have a maximum 
at b = b • Confidence limits con be determined by taking the values of b 
which cci>rrespond to a probability equal to 0.607 of the probability at the 
maximum. For a normal distribution this would correspond to one standard 
deviation. These upper and lower error estimates will normally be different, 
reflecting the asymmetry of the initial Poisson distributions. 



6. Exam p le 

This method has been applied to the analysis of a number of plates 
from the alpha-particle spectrographe As an example Figure 1 shows the 
high energy edge of the alpha line obtained from a source of 2 40 pu . 
The solid line is the calculated fit to the data. Figure 2 shows the calculated 
asymmetric distribution in the intercept with most probable value 

0.024 
(89.918 ~ 0.014): mm. 

The corresponding energies from an analysis of fcyr plates of 240p~ 
are summarized in Table 2. 

Table 2 

240 
Experimental values for the alpha energy of Pu 

Plate 

242 

243 

244 

246 

weighted mean . 

E ne rgy (ke V) 
(Ieast squares) 

5 168.35 + 0.35 

5 168.24 + 0.19 

5 168.35 + 0.28 

5 1 68 • 43 + O. 1 9 

5 168.34 + 0.12 

E ne rgy (ke V) 
(maximum likelihood) 

5 168.25 ~ ~:~: 

5 168. 09 ~ ~: ~ ~ 

5 1 68. 1 4 ~ ~: ~ ~ 

5168.25~~:~~ 

Although on theoretical grounds, as explained above, one should 
expect this method to give more reliable results, extensive numerical 
calculations with data from our alpha-spectrograph show no significant 
difference between the results for the energies based on this and the usual 
least-squares method. 
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For the least-squares calculation the mean and standard deviations 
were calculated applying the usual formulae 

2 L x.ler. 
- 1 1 
X = ----=---

L li ()~ 
1 

l = 
<f~ ü~ 

x 1 

For the maximum likelihood calculation,an approximation was used as 
explained in the Appendix. The asymmetry, clearly visible in the errors . 
of the individual measuremenls, tends to disappear in the mean, as might be 
expected on the basis of the Central Limit Theorem. 

It is certainly reassuring that the two methods of calculation do not 
give widely disparate results and one can,'herefore, for most applications 
at least, apply the simpler least-squares method with confidence. 
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Figure 1 - High energy edge of an alpha line 
with an adjusted fit 
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Appendix 

An appro'fimate method for determining the "best" value From a set o:f 

measurements with asymmetric errors 

la 

Let us suppose that as a result of a series of N independent measure­
ments on a quantity x we obtain the values xl ' x

2 
' ••• , x

N 
with probability 

distribution,s f
1 

(x), f
2

(x), ••• , fN(x). The point xi is that value of x for 

which f.(x) is a maximum. We wish to use the measured x. to obtain ~ "best" 
1 1 

value x. This "best" value, in the sense of maximum likelihood, will be the 
value of x for which the function 

N 
= Il f.(x) 

• 1 1 1= 

(A 1) 

is a maximum. 

ln the case we are considering the distributions f.(x} have the form 
1 

shown in Fig. 2 and must be evaluated numerically. In order to calculate 
F(x) exactly we would have to determine numerically ail the densities f.(x) 
at a large number of points and then form their product. Although in 1 

principle this could be done, we have preferred to simplify the calculation 
by replacing the f.(x) bya "double gaussian" of the following normalized 
form. 1 

(x - x.) 
2 

c. 1 
, for - 00 < x ~ • exp - 2 x. , 

1 

2 ()i. ~ 
1 

g.(x) = 
1 

[ {x - xl] c. , for x
i
.( x (QO, • exp - 2 

1 
2 (Jil 

(A2) 

with 

Here xi is the most probable value (b
o 

in Fig. 2) and o-il and J'i2 

are the upper and lower confidence limits, respectively, as described in 
section 5 and shown in Fig. 2. 



" 

It should be noted that as a consequence of the asymmetry of 
equation (A2), the mean value of x 

00 

fj(x) = J x • 9 j(x) dx = x j + J 2/rr . (ITil - ITj2) 

-oc;> 

cannot be identica 1 with xi ' unless <Ji 1 = 0;2 • 

The l'best" va lue x of x is therefore that for wh ich 

N 

F{x) = 11 g.{x) is a maximum. 
i=l 1 

As before, the upper and lower confidence limits are the points x at which 

F{x) ....J 0.607 F{x) • 
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