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A new method for distinguishing between pairs and single pulses

by Jérg W. Miuller

1. Introduction

In recent years various groups have focussed their interest on problems related

to spurious pulses which are an obvious and permanent nuisance in all measurements
of absolute disintegration rates. The current methods available for detecting

and measuring afterpulses have been well reviewed quite recently in several

papers ( [13 to E3I), where also earlier references can be found.

Apart from a few rare cases where pulse-height analysis is possible, all these
techniques use in one way or another the time relationship which exists between
the corresponding "genuine" and “"spurious" pulses. Within this general approach,
two main variants can be distinguished. Either the time distribution of the intervals
is measured, or one analyzes the relative variance in the number of registered
counts which can be deduced from repeated measurements. Let us first have a brief
look at some of the merits and drawbacks of these "interval" and "counting"
techniques.

In the first place, they all suffer more or less from the fact that the influence of
dead times is an essentially unsolved problem for parent-daughter decays or
similar two-step processes. However, providad that ¢T , the product of count
rate and dead time, is sufficiently small, simple approximate methods for the
corresponding corrections will be adequate.

The interval method, among other virtues, has the advantage of great flexibility,
as the time origin can be determined either by a genuine or by an arbitrary pulse,
and differential or integral distributions can be measured. This technique represents
a direct approach to the problem and is capable of yielding fairly detailed
information on the time behaviour of the various mechanisms which may be
responsible for the production of spurious pulses. Besides, from an experimental
point of view, the measurements are rather straightforward and rapid.

The counting technique, on the other hand, requires a higher degree of sophis-
tication in experimentation as well as in the analysis of the results. This is at

least the case in its present form where a variance-to-mean ratio has to be
exploited. Apart from the dead-time corrections, which are a more serious

problem here, some specific assumption about the time behaviour of the after-
pulses is needed (e.g. exponential) to permit unambiguous conclusions. Although
fine achievements have been made recently in this field (14]’, [53), much work _
still remains to be done. For other versions of counting methods with gateing see | 1 [.



Since a characteristic, but often badly known time distribution between a parent
(or genuine) pulse and its daughter pulse (or afterpulse) is the only recognizable
feature of "pairs" in a train of pulses - the physical causes for the relationship
being largely unknown and therefore out of control =, it seemsnatural that
statistical methods have to be applied in any attempt to separate such pairs from
single pulses. A distinction can therefore only be expected for large samples,
but not for individual events. This is what is actually done in all the techniques
mentioned before, but other possibilities for extracting the wanted information
might exist.

2. Separation by means of a modulo 2 counter

In order to achieve such a discrimination we are going to suggest a somewhat
different approach which is based on a particularly simple variant of the correlation
technique. If we restrict ourselves to the case where a primary pulse cannot be
followed by more than one secondary puise (thus neglecting multiple afterpulses),
then any measured count in the superimposed process is either a "single" or

belongs to a "pair"

Our problem is therefore equivalent to finding a practical way to distinguish
between these two classes, e.g. by counting the pairs or the singles alone -

if this can be achieved. We think that the special form of the correlation method
as used previously ( Léj [7]) might offer an interesting and simple solution

to this problem.

We recall that in this variant a two-valued function x(t) is associated with the
counting process which jumps at each arrival of a pulse from -1 to +1 or vice versaq,
depending on the previous state. This is also done (with the same process) after

a delay & . A simple electronic arrangement then allows us, by measuring an
average count rate, to determine the autocorrelation function

R(S) = E {x(t) + x(t+ 8)} . (1)

If W(k) is the probability for measuring exactly k counts within a time interval §
(with random origin), the correlation function may also be written in the form

R(S) _>: W(k) * (-1)¥ = Prob (k even) - Prob (k odd) . 2)
NMow, the total number of pulses can always be decomposed into "pairs" and

"singles", thus

k =2n +n , (3)
P s

where nP is the number of pairs and n of single pulses within the time 5.



Whether k is even or odd depends therefore only on the number of single pulses,
hence

n
R(§) =(§% th)-(-l)s . (4)
n=

This relation holds quite generally and is independent of any assumption about
the probability distribution.

An experimental measurement of the correlation function R(2& ) is thus not at all
affected by the presence of pairs. As o matter of fact, this is an obvious consequence
of the construction of the correlator which (in the present form) measures the
difference in the probabilities for counting an even or an odd number of events in S .
It is therefore basically a modulo 2 counter.

As in (4) no interval distribution is needed, but only the probability for a given
number of (unpaired) events, this relation may also be applied to non-homogeneous
processes. With the help of the well-known result ([6], [7]) that for a Poisson
process (with count rate ¢ ) the correlation function is given by

R(S) = e'ZYJSR (5)

it now follows (see Appendix A) that for a Poisson distribution of the primary events
we always have
—2
R(S) = ° (6)

Here e is the mean number of uncorrelated single pulses in the interval & .
In order to illustrate more explicitly the effect on the correlation function, let us

consider two specific assumptions for the time relationship between main pulise
and afterpulse in some more detail.

. Exponential time distribution

This case has already been treated earlier in eonnection with the parent-daughter
problem. If

? = true count rate of the primary events,
T

average time interval between primary and secondary event,

€y 2 detection probabilities for a primary (secondary) event,
4 SR

probability for afterpulsing (per genuine pulse) and

b

experimental count rate for background,

then it can be shown [8] that the mean number of uncorrelated single pulses
in a time interval & is given by
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where now E_] =e . but
82 = 0. e,

In what follows, 22 thus always means the "effective efficiency"” for afterpulses,
with 0 included.,

By using the abbreviations introduced previously in a similar context [9], namely

A= p(E,+&) - € E)+b  and

- (8)

B=p-&¢,
the expectation for singlés may be written as’

w, = (e =B 18] +28T( 781/ 9
Since a direct measurement of the total count rate yields

Prop = §EJ T EL +b =X+, | (10)
an equjvalent form of (9) isalso .. .

e, = 9 Sl -28(Sl-T + T+ 'lg'/t . 3 (9")

From (9) or (9') we obtain réadily the limiting cases
( P I8l = (o4 ) 18] rer 8} & T
“f{ (e -B) |8] 2 shsE

We may note. that borh these limits are actually jndependent, of the specific
time distribution chosen here (see Appendix B).

The correlation function is now easily obtained inserting (9) or (9') into (6) as
e
exp {-2(ck -S| - 4pT( -7 T)
. , St
o {2518 g Ul )

R(S)

]

(11)

I

A convenient graphical representation of the correlation function is for instance

obtained by plotting the quantity - l 1nR(&) as a function of the delay cS



which is according to (6) just (4, (compare Fig. 1a). The experimental curve
lies between the two straight linés representing the initial and the final slopes
X + B, respectively, and passes at |§] = T through the point

(x +B)T -287T/e=r (X+0.2648)T .

A result equivalent to (11), apart from printing errors, has actually been obtained
previously [103 . The much more elaborate method, however, has the drawback
that it is not evident that R is entirely determined by the unpaired pulses alone,
as is clearly shown by (4) or (6). Since in both this approach and the present one
the poissonian nature of the (surviving) parent pulses is used in an essential way
for the proof (by assuming an exponential interval density for any time origin),
neither can be used to take dead-time effects into account in a rigorous way.

4, Constant time interval

In this model, an afterpulse is supposed to occur (if at all) at a fixed time lag ©
after the genuine pulse. If the same notation is used as before, the experimental
pair rate for a very large measuring interval is given by

P, = f e tBe, = 3E € =B . (11a)

Applying (10), this leaves for the rate of the singles

= e %o

=9(g]+£ ~2 £ E)th =X =B « (12b)

2 ~1 2)
We now have to determine the distribution of the pairs in the interval 5.

This problem is very similar to the one considered in [8] for the exponential

time distribution, but is actually simpler as the density corresponding to a constant
distance T is just the delta function 3 (t -T). For the survival probability of

a pair (with primary pulse at t) this yields

{1 if 0<trcl8l-T
1) =
g g Bl S

The corresponding average probability is therefore

18]
! e '
- 1 - ( (,-gl -1T) for T <« |3
Sl imes ) t d L i I—S- - =

Max <‘,1-—’C— O) (13)
L 18] f



This gives for the number of pairs within an interval § the expectation

(14)

Wp = QPEISI-‘- 9Be]ezal5|—

The average number of uncorrelated pulses in 8 is therefore

which after some elementary rearrangements can be brought into the form

_ [« +p) 18] for 1§l <t
(s {m-m S +2BT v 1§ 3T (1s)

which is equivalent to

_ \P 'Sl for lglé’(} (15')
s me‘gl 28 (181-T) v 16157

i
.

Since we know that pairs as well as single pulses form an inhomogeneous Poisson
process for any interval distribution |8 |, we now obtain the correlation function
by simply inserting (15) into (6) as

exp r-Z? ISI l for 161E T
R(S) = \ Lottt , - (6)
lexp [—-ZPtMlSl“‘zﬁ(Lgl -T)_l o 16127 .

Fig. 1b shows that plotting - -21-'ln R(S) versus & is again a convenient method
for determining T as well asp =6 - p €y ey s which corresponds to the sudden

change of slope occurring at lél = T . If the other parameters can be assumed to be
known, this therefore leads to a direct determination of the probability © for the
generation of afterpulses.
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Fig. 1. Schematic behaviour of the correlation function R(§ ) in the presence
of afterpulses, if these have a) an exponential, b) a constant interval
distribution with respect to the primary event, each time with mean T .

For details see text.



5. Final remarks

It may be interesting to note that in this method the quantity we are actually
looking for, namely the pair rate B, is essentially obtained as the difference
between two measured mean values (see Fig. 2), whereas in previous techniques
the corresponding quantity had to be calculated from a difference of variances.
Therefore a better precision might perhaps be expected for the new approach.

Finally, we may mention that the usefulness of this method should be largely
independent of the presence of dead times. If the pairs are not too frequent, as

will be the case for afterpulses, the "surviving" events form to a good approximation
a dead-time-distorted Poisson process. Since the autocorrelation function is well
known for this case [l l] , the corresponding influence can be taken into account.

It thus seems from what has been said above that such a correlator with only

two possible states might offer itself as a nearly ideal instrument for distinguishing
between paired and single events in a series of pulses. Nevertheless, some caution
might well be in order here as no attempt has yet been made to check the
feasibility of this idea experimentally.

A generalization of this method for determining quantitatively the occurrence
of multiple pulses will be presented in another report.

APPENDICES

A. Direct derivation of (6) for a Poisson process

It has been shown previously ( [12:;, eq. 12), that for the case of a parent-
daughter process with parent pulses following the Poisson law, the probability for
observing exactly k events is given by

e ti) Koow! e k-2

N s p . s
W(k) = e 2 T (A1)

=
where e and (L are the expectations for the number of singles and pairs,

respectively, and K is the largest integer below (k+1)/2.
Let us briefly consider two simple special cases of (A1).

a)"k&p =0, i.e. complete absence of all (true) pairs. As | in (A1) stands for

the number of pairs, the sum reduces to the term =0 , thus

k
L

W(k) = e

which is an ordinary Poisson distribution for k.



b) M= 0, i.e, there are only pairs. In this case, the only term remaining in the sum

(A1) is for j=k/2, which requires that k be even. Hence

I
- “L
P.—B  for k =2j

i
lc

0 " k odd.

e

Wik) =

We therefore arrive at a Poisson distribution for the pairs, as.expesteds -

Let us now evaluate the probability for k even on the basis of (Al)..

o
E W(k=2n)' .
n=0

Prob(k even)

where, applying its definition given.in (A1), K has been replaced by n since
k=2n. ) b

Formally, the sum over | may be extended to infinity-as 1/(n=j) ! =0 for | > n.
By.reversing the order of the summations we get
i 2(n-j)
- & 8]
TRy o

Prob(k even) = e e s
9 1150 L2t !

But since [12], with s=n-j ,

>0y 28
2% A = e/\ +e-'l, (A2)
=5 2s) !
s=
we may also write i
(HHi) oo w "y K =
Prob (k even) = e . pzf‘?'l(e *+e )
EI
1 ."_'.2{.“".
= 5(“"6 S) . (A3)

As k can only be even or odd, there is obviously
. 20
Prob(k odd) = 1 - Prob(k even) =5 (I'=e %) . (A4)

Equation-(2) then yields for the correlation function

r =24 -2 -2 (L
R(5)=-,}L<1+e = (1 -e Mﬂw °

as we had expected.

_, (6)



B. Limiting values for W and R(0)

For a sufficiently short time interval O, we have only to consider the cases that
1 or O pulses arrive, as the probability for several events can be neglected for

IR ?-] . Thereby we obviously assume a "smooth" behaviour and in particular

the cbsence of a delta function near the origin of the interval density. This
therefore excludes the case where © —> 0 (compare for example. [9_1) We then
have

Prob(k odd) = Prob(1) :\\-;P |'(S| .

(B1)
Prob(k even) = Prob(0) =~ 1 - yf 3 11 .
This gives with (2) for the correlation function
R(§) = Prob(k even) - Prob(k odd)
~ | -1 .
~1-29, 16 for 161 & o . (82)

The correlafion function thus always starts for S =0 at R=1 and then decreases
linearly with the slope

s T R R I e (B3)
This general feature has previously been used in a more complicated example [l]].
It will be obvious that for- & —> 0

ind ol iR c ‘ s . '

Hy = fpop 101 = (X P11 and @ =0, (B4)

as pairs require a finite interval length to "survive" (Fig. 2).

The initial linear behaviour (B2) of the correlation function R( S) is thus quite
a generdl feature which is not restricted to aspecific process or.interval dist_ribufion.,
ln order to determine b for the case of a very long delay, we restrict ourselves

to a Poisson process for the original pulse sequence: For 16 55 € ’ however,
the relafive contribution to Lo from such (original)pairs where one of the partners

happens to fall outside the begmmng or the end of the measuring interval )
becomes negligible (edge effect). We therefore have for 1§ 1 53 T
|l c e & v ; :
w, = (g, -29€ c)IOI—(Q(-B)IS.I, 7 (85)

independently of the exact interval distribution for pdirs (cf. Fig. 2), and the
correlation function goes over into the simple exponential

R(S) = exp (-2(x =B 1S 1) (86)
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