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P. new method for distinguishing between pairs and single pulses 

by Jërg W. N\Uller 

1. Introduction 

ln recent years various groups have focussed their interest on problems related 
to spurious pulses which are an obvious and permanent nuisance in ail measurements 
of absolute disintegration rates. The current methods available for detecting 
and measuring afterpulses have been weil reviewe d quite recently in several 
papers ( [1 J to [3J), where also earl ier refe re nce s can be found. 

Apart from a few rare cases where pulse-height analysis is possible, ail these 
techniques use in one way or another the tim~ relationship which exists between 
the corresponding IIgenuine ll and IIspuriousll puls~s. Within this general approach, 
two main variants Can be distinguished. Eithar the time distribution of the intervals 
is measured, or one analyzes the relative variance in the number of registered 
counts which can be deduced from repeated measurements. Let us first have a brief 
look at some of the merits and drawbacks of these "interval" and "counting" 
techniques. 

ln the first place, they ail suffer more or less from the fact that the influence of 
dead times is an essentially unsolved problem for parent-daughter decays or 
similor two-step processes. However, provided that pl: , the product of count 
rate and dead time, is sufficiently small, simple approximate methods for the 
corresponding corrections will be adequate. 

The interval method, among othar virtues, has the advantage of great flexibîlity, 
as the time origin can be determined either by a genuine or by an arbitrary pulse, 
and differential or integral distributions can be measured. This technique represents 
a direct approach to the problem and is capable of yielding fairly datailed 
information on the time behaviour of the various mechanisms which may be 
responsible for the pr.oduction of spurious pulses. Besides, from an t:lxperimental 
point of view, the measurements are °rather straightforward and rapid. 

The counting technique, on the other hand, requires a higher degree of sophis­
tication in experimentation as weil as in the analysis of the results. This is at 
least the case in its present form wh~re a variance-to-mean ratio has to be 
exploited. Apart from the dead-time corrections, which are a more serious 
problem here, some specifie assumption abo ut th tÎm e be haviour of the afte r-
pulses ois needed (e. g. expone ntia 1) to perm i t unambiguous concl usions. AI though 
fine achievements have been made recently in this fi e ld (L 4- 1 [5J ), much work __ 
still remains to be done. For other versions of count ing me thods wi t h gateing see II J. 
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Since a characteristic, but often badly known time distribution between a parent 
(or genuine) pulse and its daughter puls~ (or afterpulse) is the only recognizable 
feature of "pairs" in a train of pulses - the physical causes for the relationship 
being largely unknown and therefore out of control -, it se-enrs"'natural -t-hat 
statlstical methods have to be appl ied in any attempt to separate such pairs From 
single pulses. A distinction can tharefore only be expected for large samples, 
but not for individual events. This is what is actually done in ail the techniques 
mentioned before, but other possibilities for extracting the wanted information 
might exist. 

2. Separation by rn e ans of a modulo 2 count~ 

ln order to achieve such a discrimination we are going to suggest a somewhat 
different approach which is based on a particularly simple variant of the correlation 
technique. If we restrict ourselves to the case where a primary pulse cannot be 
followed by more than one secondary puise (thus neglecting multiple afterpulses), 
then any measured count in the superimposed process is either a "single" or 
belongs to a " pa ir". 

Our problem is therefore equivalent to finding a practical way to distinguish 
between these two classes, e. g. by counting the pairs or the singles alone -
if this Can be achieved. We think that the special form of the correlation method 
as used prQviously ([6J, [7]) might offer an interesting and simple solution 
to 1his problem. 

We recall that in this variant a two-valued function x(t) is associated with the 
counting process which jumps ot each arrivai of 0 pulse From -1 to +1 or vice versa, 
depending on the previous state. This is olso done (with the some process) after 
a deloy [; . A simple electronic arrangement then allows us, by meosuring an 
average count rate, to determine the autocorrelation function 

R( $) = E {x(t) • x(t+ b)} . (1) 

If W(k) is the probability for measuring exactly k counts within a time interval 8 
(with random origin), the correlation function may also be written in the form 

R( S) = 5- W(k) • (_1)k = Prob (k even) - Prob (k odd) 
k=O 

t--Iow, the total number of pulses con always be decomposed into "pairs" and 
"singles", th us 

k = 2 n + n 
p s 

where n is the number of pairs and n of single pulses within the time !, 
p s 

(2) 

(3) 
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Whether k is even or odd depends therefore only on the number of single pulses, 
hence 

n 
R(O) =~ W (n ) • (_ 1) s (4) 

n =0 
s 

s 

This relation holds quite generally and is independent of any assumption about 
the probabil ity distribution. 

An experimental measurement of the correlation function R( ~) is thus not at 011 
affected by the presence of pairs. As a matter of fact, this is an obvious consequence 
of the construction of the correlator which (in the present form) measures the 
difference in the probabilities for counting an even or an odd number of events in ~ • 
It is therefore basically a modulo 2 counter. 

As in (4) no intervol distribution is needed, but only the probability for a given 
number of (unpaired) events, this re lation may also be ap~1 ied to non-homogeneous 
processes. Vv' ith the help of the well-known result ([6J, [7J) that for a Poisson 
process (with count rate 5> ) the corre lation function is givan by 

R(E) = e-291 &I, (5) 

it now follows (see Appendix A) that for a Poisson distribution of the primary avents 
we always have 

-2 f..t., (' , s 
R(,,) = e 

Here f-4 is the mean number of uncorrelated single pulses in the interval b . 
s 

(6) 

ln order to illustrate more explicit!·y the effect on the correlation function, let us 
consider two specifie assumptions for the time relationship between main pulse 
and afterpulse in some more detail. 

3. Exponential time distribution 

This case has already been treated earlier in eonnection with the parent-daughter 
problem. If 

. . 
S' = true count rate of the primary events, 

r = average tÎme interval between primary and secondary event, 

el 2 = detection probabilities for a primary (secondary)eve.nt, , 
e = probability for aFterpulsing (per genuine pulse) and 

b = experimental count rate for background, 

then it can be shown [8J that the mean number of uncorrelated single pulses 
in a time interval E- is given by 
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= dEI + ê 2 - 2 é 1 E 2 [1 - I~ j (; - , e ~ 1E1I'C )]} 1 6: 1 :. b i f, 1 • , (7) 
• 1 

where now El - el' but 

E 2 :=? 8 • e 2 

ln what follows, É.
2 

thus always means the ",~ffeç:tive efficiency" for afterpul'ses, 
with 9 included. 

By using the abbreviations introduced previously in a similar co'ntext [9J, namely 

.~ .' 
and 

(8) 

the expectation for si~gle's may be written as " :, 

tL = (ex: -~) i~1 + 2 ~'C(1 - e- I~I /t) 
s . ' . .. . . 

(9) 
,,' 

Since a direct measurement of the total count rate yields 

r to t = ~ (E. 1 + é 2) + b ::: <X + ~ , (10) 

an equJy;pl~':lt, f~,rrn ,9f (9.) is , aJso . ' " • ' 

U ::: ~ j ~ 1 - 2 f3 ( ! s t - t: + L . e -1 S I;~) 
t""'s tot ' 

•• ' ": ~ ,_ f. ... 

' . ' ., 

From (9) or (9') we ',0 btaÎ n rë6dity thel imiting"cases 

f~r' ibr <:.< t-
;1, 

. ,,' . , . . . 

,, 1,1. Ist . » :~ . ; " 

We may note tha.t. qqf,h th~s~, lirnitsare act!Jally independent, of the sp~cific. 
time distribution chosen he~e '(see Appendix ' B). " . ' . . : , :" " 

The correlation function is now easily obtained inserting (9) or (9') into (6) as 
1 -

R ( S) ::: exp [ - 2 ( 0\ - ~) 1 s 1 - 4 ~ r (1 - e - i cS 1 IL ) J 
::: exp S - 2 5' 1 si + 4 ~ ( ib 1- L + T . e - lcSl / L) l 

l tot J 
( 11) 

A convenient graphical representation of the correlation function is for instance 

obtained by plotting the quantity - ~ . 1 n R( $ ) as a function of the delay $ , 

"; 

1· ; ~ 
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which is occording to (6) just ~ (compare Fig. 1 a) 0 The experimental curve 
1 ies betwee n the two straight 1 in~s representing the initial and the final slopes 
0( :!: ~ , respec tive 1 y, and passes at lb 1 = 't through the po i nt 

(~ + ~) 1; - 2 ~ ~ / e -:.:~ (0\ + 0 0264 ~) T • 

A result equivalent to (11), opart From printing errors, has actyally been obtained 
previously [1 OJ. The much more elaborate method, however, has the drawback 
that it is not evident that R is entirely determ ined by the unpaired pulses alone, 
as is clearly shown by (4) or (6). S ince in both this approach and the present one 
the poissonian nature of the (surviving) parent pulses is used in an essential way 
for the proof (by assuming an exponential interval density for any time origin), 
neither can be used to take dead-time effects into account in a rigorous way. 

4. Constant time interval 

ln this model, an afterpulse is supposed to occur (if at ail) at a fixed time lag T 
after the genuine pulse. If the same notation is used as before, the experimental 
pair rate for a very large measuring interval is given by 

o =Ooe ·ae =oE E =~ 
J p ] 1 2 .} 1 2 • 

Applying (10), this leaves for the rate of the singles 

s> s = 9 to t - 2 ? p 

= Cf ( t. l + t 2 - 2 é 1 <::2) + b = lX - ~ 0 

We now have to determine the distribution of the poirs in the interval S 0 

This problem is very similar to the one considered in [aJ for the exponential 

(11 a) 

( 12b) 

time distribution, but is actually simpler as the density corresponding ta a constant 
distance ï: is just the delta function S (t -1:). For the survival probability of 
a pair (with primary pulse at t) this yields 

if 0 < t (i6i - L 

Il 1 SI - 1; < t < 1$1. 

The corresponding average probability is therefore 

q = 

1 ~I 
rdï (/~I-t) 1 ) for T: 1 (" 

q(t) dt ~ .ctl 
~i. 

= 
t 0 

7- 16 i Il v ~ 
0 

1 L ) 

Max ~ 1 -m' °I ( 13) 
l 

= 
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This gives for the number of pairs within an interval b the expectation 

The average number of uncorrelated pulses in S is therefore 

~s = S>tot I~I - 2 /-Lp 1 

which after some elementary rearrangemerits can be brought into the form 

1. - { (~ + ~) ! 61 fo r 1 SI ~ 1: 
rVs - (0( -~) loi +2 ~'t: Il l âj >/ r 

which is equivalent to 

(Ls = 
for j bl ~ '"t 

1\ 161 ;y T 

(14) 

(15) 

( 15 1
) 

Since we know that pairs as weil as sin~le pulses form an inhomogeneous Poisson 
process for any interval distribution [ 8 J , we now obtain the correlatioh function 
by simply inserting (15) into (6) as 

J exp 1-2f' iSI for Ib l~ (; 
R( !; ) ~ l exp C- 2 l'::: lili:2 ~ (lôl-l:)] " 1510-t'" «16) 

Fig. 1 b shows that plotting - ~. 1 n R( cS) versus $ is again a convenient method 

for determining 1: as wei 1 as ~ = a '.9 el e
2 

' which corresponds to the sudden 

change of slope occurring at 1 ~I = L • 1 f the other parameters can be assumed to be 
known, this therefore leads to a direct determination of the probability e for the 
generation of afterpulses. 

/ 
/ 

/ / 
" ./" / r # / . 

./' 
.-/ 1 

a) 

/ 
/ 

/ 
/ 

/ 

b) 

~-----1f--------=;;" 1 b 1 
't" 

Fig. 1. Schematic behaviour of the correlation function R( S) in the presence 
of afterpulses, if these have a) an exponential, b) a constant interval 
distribution with respect to the primary event, each time with mean T . 

For details see text. 
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5. Hncrl' re marks 

It may be interesting to note that in this method the quantity we are actually 
looking for, namely the pair rate ~, is essentially obtained as the difference 
between two measured mean values (see Fig. 2), whereas in previous techniques 
the corresponding quantity had to be calculated from a difference of variances. 
Therefore a better precision might perhaps be expected for the new approach. 

Finally, we may mention that the usefulness of this method should be largely 
independent of the presence of dead times. If the pairs are not too frequent, as 
will be the case for afterpulses, the IIsurvivi ng l1 events form ta '0 good approximation 
a dead-time-distorted Poisson process. Since the autocorrelation function is weil 
known for this case [11], the corresponding influence can be taken into account. 

It thus seems From what has been said above that such a correlator with only 
two possible states might oHer itself as a nearly ideal instrument for distinguishing 
between paired and single events in a series of pulses. Nevertheless, some caution 
might weil be in order here as no attempt has yet been made to check the 
feasibility of this idea experimentally. 

Age ne rai i Z (tHo n of this method for determining quantitatively the occurrence 
of multiple pulses will be presented in another report. 

APPENDICES 

A. Direct derivation of (6) for a Poissan process 

It has been shown previously ( [12 J f eq. 12), that for the case of a parent­
daughter process with parent pulses following the Poisson law, the probability for 
observing exactly k events is given by 

-(~J...+ I--t,,) 
W (k) = eS · p 

K fJ.I i 
2: ~ 
j=J i ·t 

k-2j 
~. 

s 
(k-2;) ~ 

where ~s and \---Cp are the expectations for the number of singles and pairs, 

respectively, and K is the largest integer below (k+1)/2. 

Let us briefly consider two simple special cases of (A 1). 

(A 1) 

a)_~p = 0 , i.e. complete absence of ail (true) pairs. As 1 ln 

the number of pairs, the sum reduces to the term j=D, thus 

(A 1) stands for 

UJk 
; s 

. kT' W(k) 

which is an ordinary Poisson distribution for k. 
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b) -~s = 0, i.e. there are only pairs. In this case, the only term remaining in the sum 

(A 1) is for j=k/2, which requires that k be even. Hence 

le - f.<..p • ~~ for k ~ 2 i 
W(k) = 0 1 • 

Il k odd. 

We therefore arrive at a Poisson distribution for the pairs, as .. e.~pe~·te.d.· ·: , 

let us now evaluate the probability for k even, on the basi$,of (A.1) •. 

(:);0 

Prob(k ev,e'n) = :2 W (k=2 n)' ". 
n=O 

. .- { 

-(~+k) oc Il . Î 2n-2i 
= s p " ~ ~ . ILs 

e L ::C ... ° 1 ---- 1 

.. n;=O 1=0 1 ~ )(2n ~ 2 j) l 

where, applying îts definition given ,in (A 1), K has been re ploced by n since 
k=2n. 

FormallYI the sum over ; may i>e ex~ended to infinityas l/(n-j) ~ .: ° for L> n. 
By. reversingtfle 6rder of the .summations we gat 

, -(!-L+j.L ')vo !--LI Q() 

Pro b (k ev en) = e s p L ~ ~ 
j=O 1 • n=O 

·But sTnce [12J, whh s = n-i., 

~ À 2s À _). 
2~(2s"f1 = e +e 1 

s=O • 

we may also write 

Prob (k even) 

2 (n - j) 
tJvs 

[2{n-iTI ! 

As k can only be even or odd, there is obviously 

1 . -2 ~ .. \ 
Prob(k odd) = 1 - Prob(k even) = 2" (1 - e ). 

Equation . (2) thèh yields for the correlation function 

~ , -2 ~ -2 f-L; ] -2 IL 
R ( ~) = ~ L( 1 + e s) - (1 - e s) = e s 

as we had expected. 

• ,1 

"- . 

, " 

(A2) 

. ' 

1 ", 

(A4) 

, . " 

(6) 

. , 
,.... . 
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8. Limiting values for ~s and R( S ) 

For a sufficiently short time interval S, we have only to consider the cases that 
1 or 0 pulsesarrivs, as the probability for several events can be neglected for 

1 $ 1 « ? -1 • Thereby we obvlously assume a "stnooth" behaviour and in particular 
tot 

the absence of a delta function near the origin of the interval density. This 
therefore excludes the case where (:' -'/ 0 (com~are folr e-xample- [9J). We then 
have 

Prob(k odd) = Prob(1) ~ '?tqt 1 8 l , 

Prob(k even) = Prob(O) ~ 1 - r
tot 

1 g 1 

This gives with (2) for the corre lation function 

R( Â-) :::: Prob(k even) - Prob(k odd) 

~1-2J ISI 
tot 

fo r ,S l '« - l ? tot 

(81) 

(82) 

The correlation function thus always starts for S = 0 dt R=l and then decreases .: 
1 inearly with the slope . 

- 2 9 .. sign (S) • 
tot, :. ' ' .. , 

(83) 

r 

This general feature has p~eviously baen used in a more compl icated example CIl]. 

It will beobvious'that for' 6 -) 0 

u = 9: 1 SI = (ex + ~) 1 S 1 and Li. = 0 , 
~s tot . r-p 

(84) 

as pairs réquire a finite interval length to "survive" (Fig. 2). 

The ini~iallinear behaviour (82) of t,he correlat'ion fùnction R( $) is thus qui,te 
a generol feature which is not restricted ta a specifie process or .int~rval distribution o . . \ . . . 

ln order to determine tL
s 

for the case of a v'~ry long delay, we restrict ,ourselves 

to a Po 'isson pr~cess for the original pulse sequence, For 1 ~ 1 » t ; however, 
the relative contribution tô L..fi ftom such (original)pairs where one o'f the partners , ' s ' . . 

happens to fal\ outstde the beginning or the end of the tneasuringihterval $ 
becomes ~e91 igible (edge effect) ° We therefore have for 1 & 1 » L . 

I.J.." - (0 2 0 EE 2) 1 cS' 1 = «(;le - A) 1 S 1 
\ . S - \ fot - . j 1 p 

independently of the exact interval distribution for paüs (cf. Fig. 2), and the 
correlation .function goesover into .the simple exp9nential 

R( $ ) = exp { -2( iX - . ~) ,J I} 

(85) 

(86) 
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Fig. 2. Schematic plot of the effectivecount raté ~' lr$ 1 "'" f6r ' si~gle'p~ises 
as d function of the -meosurjng interval $ . s 
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