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Some notes on pair statistics

J6rg W. Muller

| 8 Introducrig_n

Let us assume that the parent and the daughter pulses stemming from a two=-step
nuclear decay cannot be readily distinguished, as for example is usually the case
for beta particles and highly converted gamma rays. We then say that a "pair"

is counted if both the parent and the daughter pulse from a specific decay have
been registered within a certain measuring time T. All other pulses are denoted
"singles". We assume that the intermediate state has a mean lifetime A-1 and that
the detection efficiencies of the counters are £p and 5f for the parent and daughter

pulses, respectively. Dead-time effects will not be taken into account. Qur interest
is focussed on the statistical behaviour of the total process which consists of the
random superposition of parent and daughter pulses. :

It should be emphasized that this report does not claim to state anything really new.
It is rather an attempt to derive fully some basic results from a somewhat naive
point of view which, however, will prove useful for some developments to be
desc¢ribed later. For an earlier different approach compare [11 ;
Most results are derived by completely elementary methods as well as by using
integral transforms: the second way is usually much shorter and therefore probably
easier to overlook.

In order to arrive at the probability distribution for the number k of registered:
pulses in T, a subdivision into pairs and single pulses is practical, as suggested
by their different behaviour in time. We therefore write

k = n + 2 ny s (m
where ny = number of observed single pulses

and n, = pairs,

both for a given time interval T. -

n and n, are random quantities, but the condition (1) restricts their possible

2
values for a given k, as can be seen from the following simple examples.



k " ny k n ny
0 | O 0 5 | 2
1

1 1 0 5 0

2 0 | 6 0

2 0 2 2

3 | 4 1
3 0 é 0

4 0 2 7 0 4
2 3

4 0 4 2

6 1

8 0

Table 1: Some possible numbers for singles and pairs when the total
number k is fixed

The general rule is readily shown to be

gO, 205 g ) “:k/Z]_‘ for k even

BRI | P e "k odd
and n, =9, 1,2, .,[[k/zj ;
(= =1
where l La]| denotes the largest integer below a.
- =1

For the probability of finding exactly k events in T, this yields the basic equation

K
Wi = S Pyl - 20) * By(i) @)
t=o
. B -k"'”— _,. ; for k even
,‘- < | ‘—2- " k odd.

The problem of finding W(k) is thus reduced to the determination of the probabilities
E] and 22 for the number of singles and pairs.



2. Probabilities for singles and pairs

In order to arrive at a useful explicit form of (2), the distributions for the single
and paired events have first to be determined.

Qur aim is to show that for an original sequence of parent decays forming a Poisson

process, the distributions E] and -EZ are still Poissonian.

Let us first consider the effect of the finite efficiencies. For a sufficiently long

measuring interval (T X—]) the survival probabilities 7 are

- for a pair T, = gp ’ &d 5 (3)
whereas
- for a single parent 'iTp = £ «(1- Ed) and
" daughter Ty = g (me)
oo — g
thus Iy ”p + ’t'Td
=5P+¢d-25p-£d - (4)

However, an original Poisson process with expectation ft, from which events
are eliminated at random and independently , results in another Poisson process
with new expectation i, where T is the survival probability. A simple and
direct way to see this may run as follows.

In order to arrive at k remaining pulses, we have to start from | > k original
events which are supposed to be Poisson distributed. Therefore

P(k) = Ek p o )+ by (irk) (5)
|=

e, B

where P (j)=e i is a Poisson distribution with expectation pu

and by (i, k) = (1) : sl = TITE s abinomial. distribution, k=0, 1y 1ot 1)
Inserting into (5) gives

P(k)

e ! i i {e
S ot ) @k -mitk
.=k

< r+k
E ¥ ( ) 0-7)

* T < (A r=j-k
ey ik
= ¢~ W ¢ < L0~
k1T < rl
r=0 ]
= M. ———(T;;ﬁ?k . e(]-ﬂ)tA; e—r{TtL" ——‘4'—(’&;( t)k
=p (k) . (6)



Therefore P(k) is agéin a Poisson distribution, but now with the expectation Wx,
where 04 T« 1, :

A more elegant way to derive this result would be to consider the present situation
as a special case of a so-called branching process. Then, on the grounds of
a general relation [27 , the following equation holds for the respective transforms

P(s) = p [-’sﬁ(l,s); e A R (7)
M L -8 -

Here bﬂ,(‘,k) is a Bernoulli variable with
bﬁ(l,O) = 1-1r and bg (1,1) =11 .
Applying e.g. Laplace transforms, we obtain
B (Vis) = (1) + T« e™
~ - }
p (s) = exp {(J.(e i
2 , f

J

and therefore wifh"(7)

exp %MKI'W + T e %) - ]]} A

PGs)

]

exp{’(T{vL(e-s - I)}( = E‘TJT(A— (s),

which is identical with (6).

3. Distribution of the pairs

For the pairs, the result (6) cannot be applied directly because for any measuring
interval of finite length T the probability of finding a real pair depends on its
location t, with 0 & t £ T, which may be defined for instance by the arrival
time of the parent pulse. Since "earlier" parents have obviously a better chance
of finding their daughter pulse in the same time interval (and forming thereby

a pair) than "later" parents, the survival probability for pairs is now a function
of t. In deriving (6), however, it was.essential to assume that T is a constant.

Therefore, it is probably somewhat surprising that, in spite of all that, the number

of pairs in T is still Poisson distributed all the same. This fact, as it seems,

was first explicitly stated by Foglio Paora et al. [l'-l-, but some readers might

hesitate to accept their proof of this statement since a closer look at the development
used (for their type (3) ) revedls that this might have anticipated the solution as

it corresponds to the differential form of o Poisson process. We therefore prefer

to show by means of o very simple argument more clearly the basis of this result,
which holds quite generally.
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For this purpose we imagine the counting interval ;T to be subdivided into N parts,

of equal length At =T/N. Let be the mean number of events in T. Then for

any of the resulting partial intervals (nfl) « A+ ¢ t°%4 n = At for t

(with n=1, 2, ..., N), the statisti¢gs of the pqrenfipulses is clearly still Poissonian

with mean m = |J~/N p At, say, where p is the count rate of the parent

pulses. We note that m is independent of the poSition t. On the other hand,

the survival probability T for a dgughter pulse, the parent of which has been

observed at t, is cbviously a funchon of time whnlch decreases monotonically with t.
{ &

The new expected number of pairs; with the parent pulses lying in t ot A ; is now
Ap@) =m-T@H) =9 -7TM-At L (8)

Provided that A t'is small enough (i.¢. for N 5 1), Ti(t) is o constant for a
given subinterval and the distribution of the corresponding pairs (with parents
in At) is still Poissonians :
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The tdtal number of pairs is made up by all the contributiohs from the N subintervals.,
They all form Poisson processes, but with different means. It is a well-known fact,
however, that o sum of independent Poisson processes is again a Poisson process,

as can easily be shown, either directly (see later) or, perhaps more conveniently,
agdin by the use of transforms. The multiple convelution _

P Oi'(k) = PAH_](k) * pAH‘z(k) % g .4 ¥ pA-UJN('&)

of the originals corresponds to the preduct

P (s

—tot

(s)

PA.;,L,] o pAu_'.zg's.] | Sl PA‘K'AN

N ( ‘s
o i o i
iJ=l]ePLLHi§S{ ])? exp { M(s-1)

= Bu® ©)

=

rv]

A,
1 k .l'

with M =
i

Al 0PI 3 I3 ,
The superposition-this forms another Paisson ‘process, ‘the expectation M of which -
is equal to the sum of the expectations A(_Li of the cdmponentprocesses. In our

case this yields for the new mean with (8)



N
M = lim > A(.L(i‘Af)=S>'

T
f T0) dt =T, (10)
M —% |=0 h
T
with 1T = % jﬁ(t) dt .
0

This shows that even for the case of a time-dependent survival probability it is still
permitted to use (6) withTT replaced by 1T .

In order to check this important result empirically, a Monte Carlo simulation has
been performed where the number of pairs in a given time interval T has been
counted. The result is given in Table 2 and shows indeed a very satisfactory
agreement with a Poisson distribution.

observed: expected:
n, h(nz) lez(nz) . ]06
0 478 359 479 142
1 353 215 352 533
2 129 770 129 690
3 31 736 31 807
4 5911 5 851
5 879 861
6 119 106
7 10 11
8 1 1

Table 2: Empirical frequencies h(n2) for n, pairs in T

(with ep= Ed=1, T=1, p=2 and A=1)

The empirical mean number of pairs, based on this sample of 106 intervals, is found
to be

= -6 _
n, = 107" > n, - h(n,)) = 0.737 +0.001 ,

whereas on theoretical grounds one would expect (cf. later eq. 20)

~7

(o = s ,{—(l -e-’,\) =2/e = 0.736. an



It is not difficult to show in a direct way the reproductive property of a Poisson
distribution with respect to the mean. We may restrict ourselves to the case of
two componeénts.,

Let P(k) = pml(k) * p“vz(k) :

k
with pr«(k) ="M —E—J—' .

Written in full this is equivalent to

k
P(k) = k=)' s :
P(k) '% pl.'Ll( )] pu2(|)

we obtain immediately

(L +e,) (| +,)
P(k) = e ISRy _T}_t_z =P{.L,3(|<)

with _
Mg =y Ty o

in agreement with (9).

5. Mean and variance for the pairs

We want to show here how the first two moments can be obtained directly from
the distribution. Since this is o somewhat lengthy calculation; the next section
will indicate a shortcut to arrive at the same results using integral transforms.

Since we know that the number of pairs and (by similar arguments) of single pulses
are Poisson distributed, equation (2) can now be written as



2 (k-Z])' 7 (12)

where Ky and te, are the expectations for the number of singles and pairs
in T, respectively,

[kﬂﬂ
A

{

and K =

Another equivalent form would be
e-(}bﬁp-z) 3 i k-2j
W(k) = s go 2j-1)11 (2#2) C F‘L] (12")

We first determine the first moment

00 co K
m, (k) = > kWkl= > > k- P, (i) * Py (k-2j)
k=0 k=0 =0

ol k-2
£ e /0 A L
’§|<—Zi" ¢ T e k=271

. ] - : : : . g e
Since (=i 0 for | > K, the summation over | can be extended to infinity.

Upon reversing the order of the sums we get

-(Jy+iL,) oo ui2 = K ,,\;J;-Zl
T ASE 2 Tt = &I
= =
With s = k-2] the second sum is
™ S
> 62) =M1 e +2-e :
s
hence i
a2 29
ml(k) = @ 4_:0 (P‘fl*'zl) '—!—
i=
—“'2 {'Lz 112
= e (T.L]'e +2t-L2-e )=u]+2u2 . (13)

We have to keep in mind, however, that the means e and o depend on

the length T of the measuring interval.



For the second moment (12) gives

| k-2
ity - LS a0
Putting again k=-2j =5, we have
R R T
and therefore
-2 s-1 s
us L
o sl ™ ] 2 B
{ }-H/]z(s—Z)l+(]+4l) t'14—(51)! 4|L_s_'
L e b
= EJ.,? e + (1+4) M e ‘+4|2 e ] .
or i
-, ) =
(k) = e ZZ—i—z LT+ (1+4)) w +4|_l
|

Since 4i7 +4j - (L) =4 (-1 + 40+ -

we may also wtite

ol i-2 i~
S Y g ity o
mylk) = s 1R %3TT+4“2ﬁ;ﬂ—T‘+4“+t‘)Hz‘;(rTﬂ
-, T 5] (w ]
2 2 V2 2 2 : 2
S VAL P TR TR
S R v2 2 V12
= 2
= (g 20"+ AL, (14)
This then yields for the variance of k
2 N 2 P

Actually, the results (13) and (15) for the mean and the variance just reflect
the simple fact that the total process can be thought of as the superposition of
two independent Poisson processes, namely for the singles and for the pairs.

|
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Since for the superimposed process, according to (14),
2
o (k) = m](k) +2 }-‘-2 7
equality of mean and variance is only possible if pairs are cbsent. In that case

we have obviously again a simple Poisson process. The experimental value of the
variance can therefore be used for estimating g -

6. Transform for the pair distribution

Moments of a variable are always simple to determine once the transform
of the corresponding probability distribution is known. This is what we now try
to obtain for (2) which can be written symbolically in the form of the convolution

W(k) = P, (k) = P,(2k) . (2")

The transform for the singles is straightforward. Using Laplace transforms we obtain

kil

T = - o)kl U= sk
P = )Ry, ) = e[t = 3 py0 e

For the second factor which describes the pairs we put

P2k = Q () ,

where 92“() is now the probability distribution for observing exactly k pairs

(i.e. 2k pulses) in T. Its transform is

P4,
z 2('( S'2k

£ {re0, s} =F {00, s - 2

=2 {@, ), 'zsgl = Q0 . (16)

As singles and pairs are described by Foisson distributions with respective means
!\J.] and H’Z , we obtain for the transformed total distribution

W =£ {20, s} L R0, = B0 Q0

e-25 -(.LL]HJ

.2)

U (e™3-1) L ( -1) _ . bl s !
= 1a ] " 2 = e exp |y e tHye i (17)
The moments of k (of order r) are obtained by differentiation according to
r"“,
m () = et <2 (18)
r de’
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A simple calculation leads to

%\:-{- = -exp(-H.]-Hz) exp(M,I ‘e s+pb2 -25) (&Ll e_s+2(442'e_2s)
2 _
: \2N = exp(- (Ja]-(»&z) exp(H] e”® e, e-Zs) {.(H,] et +2 ., 25)2

Hence (17) gives now

m](k) = %L‘ +2}A,2 and

2 , .
myl) = (b +20,)° + t4y + 442,

in agreement with (13) and (14).

7. The mean rates

The general structure of the superimposed process is now reasonably clear, but
we still hgve to determine the expected mean rates g and (v, for the singles

and the pairs, respectively.

For this purpose let us consider the survival probability of a pair with parent pulse
at an arbitrary lpcgtion t. If an expanentigl distribution with mean distance &7
is assumed for the time |ag between parent and doughter pulse, the probability
qlt) for the daughter to fall in the same measuring interval of duration T as her
parent is R |

T
q(t) = 7\] e"\'(xh') dx = 1 - e-x(T-*) &
t

The corresponding average probability is therefore
T
- _ 1 I8 1
q—‘.lt q(f)df—]—ﬁ(l-e
0
For AT 53 1 the effect of the finite interval length disappears since then q =1,

independently of the exact time distribution of the daughters. Taking into account
the finite counter efficiencies, the average survival probability of a pair becomes

SR (19)

(e — =

u'2 = By

Q|
-
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which generalizes (3). With an original rate ¢ for the parent pulses, we therefore
arrive at an expectation of

fy = QU T = T )| (20)

for the number of pairs in an interval T.

As the expectation for the total number of pulses registered in T is given by
o= ple,* edT,
we finally obtain for the mean number of uncorrelated single pulses in the interval T
' - =
= = = J - @ z ‘ - ‘ = -RT ‘
Wy =-2q, ?T!-&p-‘-gd 26, & |V -xT (0 -e )_l,(“ (21)

Putting
HJ] = j) » M' T "

), (22)

—i

: W, = £ -0 = £ [ 1 = AT
with o —cp+£d z“p&dl_]_KT(]-e

we see that equation (22) reduces to (4) for AT 1.

If @ mean number b of background pulses is registered in T, where cross-over transitions
and any other non-correlated events are included, this should clearly be added
to the number H./] of single pulses (and to the total number PJ)

We note that according to (21) and (20) the mean number of singles or pairs is no longer
proportional to the length T of the measuring interval. Single pulses and pairs thus
form what the statisticians call a non~homogeneous Poisson process or a Poisson

process with non-stationary increments |-3] :

Let us recall that all the above reasonings assume the complete absence of dead
times in the counters. It is not clear at the present time how dead-time effects could
be taken into account properly in the case of a two-step decay.
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