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A general test for detecting dead-time distortions in a Poisson process 
--------------~~ 

Jërg W ~ MUller 

1. Il'ltroduction 

ln checking an empirical distribution of counted events which are supposed to follow 
a Poisson law, one is often faced with the problem of testing whether this assumption 
is re~lIy justified or note P\~ is weil known l such a decision may be based on the 
result of a chi-square test l for example, where the squares of the differences 
between the theoreticaland the experimental frequencies are used. 

It also hoppens, however, that one knows in advance something about the natur.e 
of a di~tortion. In this Case one con test for its presence with a method which is 
more specific thon a general purpose chi-square testl lnparticulor/ this is true in 
the common situation where for some reason or other successive events must be 
separdted by a minimum time~interval in order to be counted individually. This may 
be due to the finite resolving time (or dead time) of the instrument with wl'lich the 
observations have been performed. 

We shall now assume that the original sequence of events con be taken as a 
Poisson process. The probability of observing exactly k events in a time interval t 

", is then given by 

'. ~, " ", ;" 

-f..A.J • e 1 
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wlth the expectation ~ = f . t , where r is the count rate of the proces~. 

Let us now study t.he dead-time modified frequency distribution W rt-(t). S ince 

here vite are interested only in the case of a small disturbance - the detection of 
an evident change is not a problem -/ we do not have to apply the exact formulae 
for the probabil ïty distributions [1]; approximations will be sufficient and more 
practîcal. For 't' < t they con be written in the form of a power series 
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where the C ï 's are coefficients depending on p" and k. For '1, = 0 we must 

have W = P, therefore C = 1. 
o 

(2) 
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ln addition, the C.is will genertdly depêhdon the type of dead time since this 
a1so influences the' number of losses. Hciwever, because this distinction is knoyvn 
to change only the second ofèler and high~r terms in the dead-tim.e corrections, 
the coefficient Clis type-independent. FUl'thermore, for the small distortions 

we are considering here, the higher orders are negl igible. For the present problem 
we may therefore write 

, (3) 

where Cl can be easily determined to be [2] 

Cl = k(pt-k+1). (4) 

Since tN' the true mean number of counts in t, and '}(. ,the experimental mean 
of k, are related to first order in yT by 

~ -tL = j{ (1 + ~ L) , 

we can also write equation (1) in the form (91:<:""1) 

= p ~ (k) • (l + k • ft.) . (l - de'?'l) 

= P ~ (k) [1 + ? 't (k - dt )] 

When combined with (3) and (4), this yields 

WuJk) ~ P (k) Il + y -C (k - Je )-~ {/ 1 + l k ( 0 t - k + 1) 1 
1-- 4t 1 t..\ ( 
\ ~ J 

. = P (k){l + L r"t(k -"x:: k (?t - k + l)-J'.l 
4t t .l! - J 

Finally, by applying (5) we obtain (always to first order) 

Wf(k) - P" (k) {l + ; [k - (k -'JdJ] 

(5) 

(6) 

(7) 

It is easy to verlfy that this approximate probability distribution is still normalized 
in the sense that 

0.0 

L W(JJ(k) = 1. 
k=O ; 

Agaln, this obviously neglects the fact that k cannot exceed the value tic. + l, 
but since 'C «t, this is consistent with our previous assumption of small dead-time losses. 
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The form of (7) shows that the points where the original and the modified 
distdbutions cross do not depend on the value of 1:: 1 since WuJk) :::: P qe(k) 
requires that t 

k - (k - de)2 = 0 i 

having the solutions 

'1 C--l-' 
VX +4 . (8) 

These two values are the limits of the range of the integers k in which the 
frequency of occurrence is expected to be augmented by the presence of a dead 
time. Thereby the hypothetical original frequency distribution, with which 
the empirical values are compared; is assumed to be Poissonian with an average 
value equal to the experimentally observed mean. Here again, therefore, the 
numerical "alue of the dead time is not required; it is sufficient .to know that it 
is small. 

The interesting feature of this approach 1 ies in the fact that (8) allows us to prediçt 
the sign of the eventual deviations that an empirical frequency distribution may 
show with respect to a calculated Poisson law. By means of a simple sign test 
it is then possible to decide whether the prediction is verified or not by the 
observations, since in the absence of a definite dead-time distortion the deviations 
wou Id be positive or negative with equa 1 pro babil ity. 

3, Appl ication 

As a practical example we apply these results to the famous experiment of Rutherford 
and Geiger [3J where the number k of scintillations, produced by the alpha 

particles From 210po on a screen of ZnS I were counted within time intervals of 
7.5 s each " Table 1 reproduces the ir dafa~/iA. a form suitable for our purpose 1 

where F(k) are the experimental frequencies for exactly k events, and N their sum. 
For comparison, the Poisson probabîlities P (k) are also calculated, where the 

., l 'k * 'X emplrlca mean IS ta en as 

= 
2: k • F (k) 

2.. F(k) 

10 097 
=2608 =3.87155. 

* For the total number of observed alphas, the number 10 094 is often found in the 
literature (e.g. [4J and [5J), which is at variance with the original data [3].. 

ln the notation of Table l f the discrepancy is due to a replacement of 
F(13) = F(14) = 1 by F(12) = 2 • 

. ". ~'. 
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k F(k) G(k) = ~i9h of difference F~G 
N • P;tt- (k) actual predicted . 

0 57 54 l + 

1 203 210 

2 

1 

383 407 

k -\. 
3 525 525 (zero) + 

4 
1 

532 508 + + 

5 408 394 + + 

6 273 254 + + 

k+ . or 

7 139 141 

8 45 68 

9 27 29 

~10 16 17 
---

N = 2 608 (2 607) 

Table 1: Evidence for a dead-time distortion in the Rutherford-Geiger 
data [3j. The theoretical frequency G is rounded to the 

nearest integer. Only for k=O the signs of the actual and predicted 
differences do not agree. 

According to (8), the "c ritical" values of k are thus given by 

k . ::::: 2.3 and 

It as evident from Table that the prediction of the sign of the deviation from 
a pure Poisson distribution, as based on this model, is quite successful: the signs 
turn out to be correct in 9 outof la cases. 

A simple sign test, based on the binomial distribution with probability 0.5, 
now shows that the chance R for such a good (or an even better) agreement 
to happen by chance is only 

This seems to be a reasonable confidence level to permit the conclusion that 
the observed deviations cannot be random. On the contrary, the data are c1early 
distorted by a dead time, although they are often presented in textbool<~:on 
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mathematical statistics as an illustration for the Po isson process. As a matter of 
fact, a fest based on the chi-square distribution; when applied to theslil delta r 4J, 
yields a fair agreement with a pure Poisson distribution (R --...1 17%), but even hère 
the situation is hardly IIvery satisfactoryll [6]. This shows only that the comparison 
is not specific enough, which Îs not too surprising in our case since any information 
about the sign of the deviations is thereby lost. 

Finally, to reinforce the argument, one can also try to determine the dead time l. 
involved in this experiment. In doing so, a value of 

T = (0.05 + 0.03) s 

is obtained, which is certainly an acceptable value for the resolving time of 
Dr. Geiger's eye - assuming that it was he, as the younger, who actually made 
the observations. 

4. Additional remarks 

It may appear as somewhat unsatisfactory in what has been said above that agreement 
or disagreement between the predicted and observed signs do not take into account 
the magnitude of the differences nor the statistical uncertainties in the measurements. 
On the other hand, this independence of any additional assumption about /the 
distributions involved is obviously one of the main advantages of a sign test. 

ln our case, however, the essential point is only that the signs of the differences 
are taken into account at ail - but not necessarily by simple counting, as in a 
normal sign test. One could thus easîly imagine other statistics, as e.g. the simple 
variate 

K 
Q = L S • F(k) - G (k) 

k=O k V G(k) 
(9) 

where Sk is + 1 (- 1) ïf the corresponding "pi:edicted difference is positive (negative). 

For 1< » 1 and random deviations, as would be the case for a perfect fit, the predicted 
sign Sk is not correlated with the actual difference F - G, and Q tends towards 

a Gaussian with mean zero and variance K. On the other hand, if the differences 
are significant and if their sign is correctly described by Sk 1 most of the contri-

butions will be positive and exceed unity. This fact will then easily show up under 
any test for normal ity of Q or its components, since a fair approximation of Q to 
a Gaussian may al ready be expected for 1 say, K '>' 5. 

ln the Case of the Rutherford-Geiger data, we obtain the numerical value Q "-' 7 .9. 
Since K = la, this is about 2.5 times the expected standard deviation. A one-sided 
test based on the normal distribution would therefore lead to a significance level 
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of about 99.5%, confïrming our earlier conclusion that the observations differ 
significantly from a Poisson distribution. 

We may add that q similar '~laim has been made earlier by Pacilio [7J, buthe gave 
no proof and arrived at a distribution which wds later found to be wrong ral • 

b ,.1 
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