# Comparisons of the standards of air kerma of the VNIIM and the BIPM for $^{137}Cs$ and $^{60}Co\,\gamma\,rays$

by P.J. Allisy-Roberts and M. Boutillon Bureau International des Poids et Mesures, F-92312 Sèvres Cedex, France

N.D. Villevalde, A.V. Oborin and E.N. Yurjatin<sup>\*</sup> D.I. Mendeleyev Institute for Metrology, 198005-St Petersburg, Russian Federation

#### Abstract

Comparisons of the standards of air kerma of the D.I. Mendeleyev Institute for Metrology (VNIIM) and of the Bureau International des Poids et Mesures (BIPM) have been carried out for the first time in <sup>137</sup>Cs and <sup>60</sup>Co radiation beams. The results show that the VNIIM and the BIPM standards for air kerma agree very well to within 0.2 % for <sup>60</sup>Co and to within 0.4 % for <sup>137</sup>Cs.

#### 1. Introduction

For the first time, comparisons of the standards of air kerma held by the D.I. Mendeleyev Institute for Metrology (VNIIM), St. Petersburg, Russian Federation and of the Bureau International des Poids et Mesures (BIPM), have been carried out in <sup>137</sup>Cs and <sup>60</sup>Co radiation beams. The VNIIM standards take the form of two cylindrical graphite cavity ionization chambers of volumes 1 cm<sup>3</sup> and 30 cm<sup>3</sup> and were constructed at the VNIIM (type C1 and C30): they are described in Section 2 and compared with an earlier VNIIM standard in [1]. At the BIPM, the standards are graphite cavity ionization chambers of pancake form as described in [2,3].

The comparisons were made using a VNIIM transfer chamber made by the Physicalisch-Technische Werkstatten in Germany and took place at the BIPM in April 1997.

<sup>\*</sup> Виллевальде Н. Д., Оборин А. В. и Юрятин Е. Н.

#### 2. Determination of the air kerma

The air kerma rate is determined from

$$\dot{K} = \frac{I}{m} \frac{W}{e} \frac{1}{1 - \bar{g}} \left( \frac{\bar{\mu}_{en}}{\rho} \right)_{a,c} \bar{s}_{c,a} \Pi k_i \quad , \tag{1}$$

where

| I/m                                        | is the mass ionization current measured by the standard,                             |
|--------------------------------------------|--------------------------------------------------------------------------------------|
| W                                          | is the average energy spent by an electron of charge <i>e</i> to produce an ion pair |
|                                            | in dry air,                                                                          |
| $\overline{g}$                             | is the fraction of electron energy lost by bremsstrahlung,                           |
| $(\overline{\mu}_{\rm en}/\rho)_{\rm a,c}$ | is the ratio of the mean mass-energy absorption coefficients of air and              |
|                                            | graphite,                                                                            |
| $\overline{s}_{c,a}$                       | is the ratio of the mean stopping powers of graphite and air,                        |
| $\prod k_i$                                | is the product of the correction factors to be applied to the standard.              |

The main characteristics of the VNIIM standards of air kerma are listed in Table 1. The large volume standard (C30) is used because the air kerma rate of the  $^{60}$ Co beam at the VNIIM is small (see Table 5).

| Chamber type    |                              | C1                 | C30                |
|-----------------|------------------------------|--------------------|--------------------|
| Shape           |                              | cylinder           | cylinder           |
| Dimensions      | Inner height / mm            | 11.06              | 37.00              |
|                 | Inner diameter / mm          | 11.07              | 32.10              |
| Electrode       | Diameter / mm                | 1.98               | 2.00               |
|                 | Height / mm                  | 7.95               | 25.9               |
| Volume          | Air cavity / cm <sup>3</sup> | 1.040              | 29.86              |
| Wall            | Wall thickness / mm          | 4                  | 2 + 2 (cap)        |
|                 | Material                     | ultrapure graphite | ultrapure graphite |
|                 | Density / g·cm <sup>-3</sup> | 1.634              | 1.634              |
| Insulator       |                              | polyethylene       | PPFE (teflon)      |
| Applied voltage | Both polarities              | 250 V              | 400 V              |

 Table 1. Characteristics of the VNIIM standards of air kerma

The two standards agree with each other to within 0.08 % in the  $^{137}$ Cs and to within 0.11 % in the  $^{60}$ Co radiation beams at the VNIIM.

The values of the physical constants [4], the correction factors used in (1) and associated uncertainties for <sup>137</sup>Cs radiation are shown in Table 2 for both the VNIIM and the BIPM standards.

|                                                     | BIPM BIPM relative<br>values uncertainty <sup>(1)</sup> |            | VNIIM<br>values | VNIIM relative<br>uncertainty <sup>(1)</sup> |            | $R_{\dot{k}}$ relative |           |                      |
|-----------------------------------------------------|---------------------------------------------------------|------------|-----------------|----------------------------------------------|------------|------------------------|-----------|----------------------|
|                                                     |                                                         | $100  s_i$ | $100 u_i$       |                                              | $100  s_i$ | $100 u_i$              | $100 s_i$ | $100 u_i$            |
| Physical constants                                  |                                                         |            |                 |                                              |            |                        |           |                      |
| dry air density / kg·m <sup>-3</sup> <sup>(2)</sup> | 1.293 0                                                 | -          | 0.01            | 1.293 0                                      | -          | 0.01                   | -         | -                    |
| $(\overline{\mu}_{\rm en}/\rho)_{\rm a,c}$          | 0.999 0                                                 | -          | 0.05            | 0.999 0                                      | -          | 0.05                   | -         | -                    |
| $\overline{s}_{c,a}$                                | 1.010 4                                                 | -          | 0.30            | 1.010 1                                      | -          | 0.30                   | -         | -                    |
| $W/e / (J \cdot C^{-1})$                            | 33.97                                                   | -          | 0.15            | 33.97                                        | -          | 0.15                   | -         | -                    |
| $\overline{g}$ fraction of energy lost by           | 0.001 2                                                 | -          | 0.02            | 0.001 2                                      | -          | 0.02                   | -         | -                    |
| bremsstrahlung                                      |                                                         |            |                 |                                              |            |                        |           |                      |
| Correction factors                                  |                                                         |            |                 |                                              |            |                        |           |                      |
| $k_{\rm s}$ recombination losses                    | 1.001 4                                                 | 0.01       | 0.01            | $1.0015^{(3)}$                               | 0.03       | 0.03                   | 0.03      | $0.03^{(3)}$         |
|                                                     | 0.007.0                                                 |            | 0.02            | $1.002 3^{(4)}$                              | 0.04       | 0.03                   | 0.04      | 0.03(4)              |
| $k_{\rm h}$ humidity                                | 0.9970                                                  | -          | 0.03            | 0.9971                                       | -          | 0.03                   | -         | -                    |
| $\kappa_{\rm st}$ stem scattering                   | 0.999 8                                                 | 0.01       | -               | $0.9970^{(4)}$                               | 0.02       | 0.02                   | 0.02      | $0.02^{(4)}$         |
| $k_{\rm et}$ wall attenuation                       | 1.054.0                                                 | 0.01       | 0.04            | 0.7777                                       | 0.02       | 0.02                   | 0.02      | 0.02                 |
| $k_{\rm sc}$ wall scattering                        | 0.953 5                                                 | 0.01       | 0.07            | 1.024 0 <sup>(3,5)</sup>                     | 0.03       | 0.15                   | 0.03      | $0.17^{(3,5)}$       |
| -                                                   |                                                         |            |                 | $1.022 \ 0^{(4,5)}$                          | 0.03       | 0.15                   | 0.03      | $0.17^{(4,5)}$       |
| $k_{\text{CEP}}$ mean origin of electrons           | 0.997 2                                                 | -          | 0.01            | $0.998 0^{(6)}$                              | -          | 0.10                   | -         | 0.10                 |
| $k_{\rm an}$ axial non-uniformity                   | 0.998 1                                                 | -          | 0.07            | $0.999 8^{(3)}$                              | -          | 0.05                   | -         | $0.09^{(3)}$         |
| t redial non uniformity                             | 1 007 0                                                 | 0.01       | 0.02            | $0.9996^{(1)}$                               | -          | 0.05                   | -         | $0.09^{(1)}$         |
| $k_{\rm rn}$ radial non-uniformity                  | 1.007.0                                                 | 0.01       | 0.03            | $1.0004^{(4)}$<br>$1.0008^{(4)}$             | 0.02       | 0.05                   | 0.02      | $0.06^{(4)}$         |
|                                                     |                                                         |            |                 | 1.000 8                                      | 0.02       | 0.05                   | 0.02      | 0.00                 |
| Measurement of <i>I</i> / <i>Vp</i>                 |                                                         |            |                 | ~                                            |            |                        |           |                      |
| $V$ volume $/ \text{ cm}^3$                         | 6.834 4                                                 | 0.01       | 0.10            | $1.040^{(3)}$                                | -          | 0.12                   | 0.01      | $0.16^{(3)}$         |
| <b>.</b>                                            |                                                         | 0.02       | 0.02            | 29.86(4)                                     | -          | 0.10                   | 0.01      | 0.14(4)              |
| <i>I</i> ionization current / pA                    |                                                         | 0.03       | 0.02            |                                              | 0.03       | 0.03                   | 0.04      | 0.04                 |
| Relative standard uncertainty                       |                                                         |            |                 |                                              |            |                        |           |                      |
| quadratic summation                                 |                                                         | 0.04       | 0.37            |                                              | 0.06       | $0.41^{(3)}$           | 0.07      | $0.28^{(3)}$         |
| combined uncertainty                                |                                                         | 0          | 38              |                                              | 0.06       | 0.41 <sup>(3)</sup>    | 0.07      | $0.27^{(3)}$         |
| comonied uncertainty                                |                                                         | 0.         | 50              |                                              | 0.4        | 1 <sup>(4)</sup>       |           | 0.29<br>$0.28^{(4)}$ |
|                                                     |                                                         |            |                 |                                              | 0.1        | -                      |           | ·.=·                 |

 Table 2. Physical constants, correction factors and associated uncertainties used in the determination of air kerma in <sup>137</sup>Cs radiation

(1) Expressed as one standard deviation.
 *s<sub>i</sub>* represents the relative standard uncertainty estimated by statistical methods, type A;
 *u<sub>i</sub>* represents the relative standard uncertainty estimated by other means, type B.
 (2) At 101 325 Pa and <sup>273.15</sup> K.
 (3) Values for the C1 standard.
 (4) Values for the C1 standard.

<sup>(4)</sup> Values for the C30 standard.
 <sup>(5)</sup> The wall attenuation and scattering corrections are combined.
 <sup>(6)</sup> Determined using reference [5].

The corresponding values for <sup>60</sup>Co radiation are shown in Table 3.

# Table 3. Physical constants, correction factors and associated uncertainties

|                                           | BIPM    | BIPM BIPM relative         |           | VNIIM                  | VNIIM relative             |                  | $R_{k}$ relative |                       |
|-------------------------------------------|---------|----------------------------|-----------|------------------------|----------------------------|------------------|------------------|-----------------------|
|                                           | values  | uncertainty <sup>(1)</sup> |           | values                 | uncertainty <sup>(1)</sup> |                  | uncer            | tainty <sup>(1)</sup> |
|                                           |         | $100  s_i$                 | 100 $u_i$ |                        | $100  s_i$                 | 100 $u_i$        | $100  s_i$       | $100 u_i$             |
| Physical constants                        |         |                            |           |                        |                            |                  |                  |                       |
| dry air density / kg·m <sup>-3 (2)</sup>  | 1.293 0 | -                          | 0.01      | 1.293 0                | -                          | 0.01             | -                | -                     |
| $(\mu_{\rm en}/\rho)_{\rm a.c}$           | 0.998 5 | -                          | 0.05      | 0.998 5                | -                          | 0.05             | -                | -                     |
| $\overline{s}_{c,a}$                      | 1.001 0 | -                          | 0.30      | 1.001 0                | -                          | 0.30             | -                | -                     |
| $W/e / (J \cdot C^{-1})$                  | 33.97   | -                          | 0.15      | 33.97                  | -                          | 0.15             | -                | -                     |
| $\overline{g}$ fraction of energy lost by | 0.003 2 | -                          | 0.02      | 0.003 2                | -                          | 0.02             | -                | -                     |
| bremsstrahlung                            |         |                            |           |                        |                            |                  |                  |                       |
|                                           |         |                            |           |                        |                            |                  |                  |                       |
| <b>Correction factors</b>                 |         |                            |           |                        |                            |                  |                  |                       |
| $k_{\rm s}$ recombination losses          | 1.001 6 | 0.01                       | 0.01      | 1.002 3(3)             | 0.03                       | 0.03             | 0.03             | 0.03(3)               |
|                                           |         |                            |           | 1.008 7(4)             | 0.04                       | 0.03             | 0.04             | $0.03^{(4)}$          |
| $k_{\rm h}$ humidity                      | 0.997 0 | -                          | 0.03      | 0.997 1                | -                          | 0.03             | -                | -                     |
| $k_{\rm st}$ stem scattering              | 1.000 0 | 0.01                       | -         | 0.999 4 <sup>(3)</sup> | 0.02                       | 0.02             | 0.02             | $0.02^{(3)}$          |
|                                           |         |                            |           | $1.000 \ 0^{(4)}$      | 0.02                       | 0.02             | 0.02             | $0.02^{(4)}$          |
| $k_{\rm at}$ wall attenuation             | 1.040 2 | 0.01                       | 0.04      | 1.010(25)              | 0.02                       | 0.15             | 0.02             | 0.15(25)              |
| $k_{\rm sc}$ wall scattering              | 0.971.6 | 0.01                       | 0.07      | $1.012^{(3,3)}$        | 0.03                       | 0.15             | 0.03             | $0.17^{(3,3)}$        |
| t moon origin                             | 0.002.2 |                            | 0.01      | $1.019^{(4,3)}$        | 0.03                       | 0.15             | 0.03             | $0.17^{(4,3)}$        |
| $\kappa_{\rm CEP}$ mean origin            | 0.992.2 | -                          | 0.01      | $0.9970^{(3,0)}$       | -                          | 0.10             | -                | $0.10^{(3)}$          |
| k axial non-uniformity                    | 0 996 / |                            | 0.07      | 0.990 3(3)             | -                          | 0.10             | -                | $0.10^{(3)}$          |
| $\kappa_{an}$ axial non-uniformity        | 0.990 4 | -                          | 0.07      | 0.999 6(4)             | -                          | 0.05             | _                | $0.09^{(4)}$          |
| k radial non-uniformity                   | 1 001 6 | 0.01                       | 0.02      | $1\ 000\ 4^{(3)}$      | 0.02                       | 0.05             | 0.02             | $0.0^{5}$             |
| in radia non aniformity                   | 1.001 0 | 0.01                       | 0.02      | $1.000 \ 8^{(4)}$      | 0.02                       | 0.05             | 0.02             | 0.05 <sup>(4)</sup>   |
|                                           |         |                            |           |                        |                            |                  |                  |                       |
| Measurement of <i>I/Vo</i>                |         |                            |           |                        |                            |                  |                  |                       |
| V volume / cm <sup>3</sup>                | 6.811 6 | 0.01                       | 0.03      | 1.040(3)               | -                          | 0.12             | 0.01             | 0.12(3)               |
|                                           |         |                            |           | 29.86(4)               | -                          | 0.10             | 0.01             | 0.10(4)               |
| <i>I</i> ionization current / pA          |         | 0.01                       | 0.02      |                        | 0.03                       | 0.03             | 0.03             | 0.04                  |
|                                           |         |                            |           |                        |                            |                  |                  |                       |
| Relative standard uncertainty             |         |                            |           |                        |                            |                  |                  |                       |
| quadratic summation                       |         | 0.02                       | 0.36      |                        | 0.06                       | 0.41(3)          | 0.06             | 0.26(3)               |
| -                                         |         |                            |           |                        | 0.06                       | $0.41^{(4)}$     | 0.07             | 0.25(4)               |
| combined uncertainty                      |         | 0.                         | 36        |                        | 0.4                        | 1 <sup>(3)</sup> | 0.               | 27(3)                 |
|                                           |         |                            |           |                        | 0.4                        | 1 <sup>(4)</sup> | 0.               | 26(4)                 |
|                                           | 1       |                            |           | 1                      |                            |                  | 1                |                       |

| used in | the | determination | of air | <sup>,</sup> kerma i | n <sup>60</sup> Co | radiation |
|---------|-----|---------------|--------|----------------------|--------------------|-----------|
|---------|-----|---------------|--------|----------------------|--------------------|-----------|

<sup>(1)</sup> Expressed as one standard deviation.

Expressed as one standard deviation.  $s_i$  represents the relative standard uncertainty estimated by statistical methods, type A;  $u_i$  represents the relative standard uncertainty estimated by other means, type B. <sup>(2)</sup> At 101 325 Pa and <sup>273.15</sup> K. <sup>(3)</sup> Values for the C1 standard. <sup>(4)</sup> Values for the C30 standard. <sup>(5)</sup> The wall attenuation and scattering corrections are combined. <sup>(6)</sup> Determined using reference [5].

The Tables also list the relative uncertainties of the kerma ratio expressed as  $R_{\dot{K}} = \dot{K}_{Lab} / \dot{K}_{BIPM}$ . As the physical constants are derived from the same basic data in both laboratories, the relative

uncertainty in  $R_{k}$  is due only to the relative uncertainties in the correction factors, the volumes of the standards and the ionization currents measured.

### 3. Air kerma calibration factor

The air kerma calibration factor  $N_{\kappa}$  for a transfer chamber measured at a given laboratory is given by

$$N_{K_{\rm lab}} = \dot{K}_{\rm lab} / I_{\rm lab} \quad , \tag{2}$$

where  $\dot{K}_{lab}$  is the air kerma rate and  $I_{lab}$  is the ionization current of the transfer chamber. The experimental method for calibrations at the VNIIM is outlined in Section 3.1 and that for the BIPM in [6]. The main characteristics of the VNIIM transfer chamber are given in Table 4. This transfer chamber was calibrated at the VNIIM for the first time in March 1997 and again during the six months following the comparison. The calibrations are consistent to within about 0.1 %.

| Transfer chamber | M30001                       | Serial Number 0109               |
|------------------|------------------------------|----------------------------------|
| Shape            | cylinder                     |                                  |
| Dimensions       | Inner height / mm            | 23.0                             |
|                  | Inner diameter / mm          | 6.1                              |
|                  | Wall thickness / mm          | 0.425                            |
| Electrode        | Diameter / mm                | 1.0                              |
|                  | Height / mm                  | 21.2                             |
| Volume           | Air cavity / cm <sup>3</sup> | 0.6                              |
| Wall             | Material                     | PMMA with graphite               |
|                  | Density / g·cm <sup>-2</sup> | 1.18                             |
| Build-up cap     | Material and density         | PMMA and 1.18 g·cm <sup>-3</sup> |
|                  | Thickness / mm               | 4.55                             |
| Applied voltage  | Positive polarity            | 350 V                            |

### Table 4. Characteristics of the VNIIM transfer chamber

### 3.1 Conditions of measurement at the VNIIM and the BIPM

At the VNIIM, two sources of <sup>137</sup>Cs and one of <sup>60</sup>Co are used. Their parameters are compared with those of the BIPM in Table 5. In other respects the conditions of measurement at the two laboratories were similar throughout the comparison.

- *Position of the transfer chamber*. The axis of the transfer chamber was located in the centre of the field at the reference plane at 1 m or 0.8 m from the source at the VNIIM and at 1 m at the BIPM. The photon fluence rate at the edge of the field is 50 % of the photon fluence rate at the centre. The position of the chamber was verified without the build-up cap, the black line on the stem being placed so as to face the source. These conditions result in an uncertainty in positioning of 0.1 mm at the VNIIM and 0.04 mm at the BIPM.

| Source                             |     | Cs-137  | Co-60 |       |         |
|------------------------------------|-----|---------|-------|-------|---------|
| Location                           | VN  | IIM     | BIPM  | VNIIM | BIPM    |
| Nominal activity / GBq             | 140 | 1 200   | 1 000 | 32    | 50 000  |
| Reference distance / m             | 1   | 0.8     | 1     | 1     | 1       |
| Beam diameter or size / cm         | 20  | 11 x 11 | 11    | 20    | 10 x 10 |
| Kerma rate / $\mu Gy \cdot s^{-1}$ | 3   | 42      | 21    | 2.7   | 4 600   |

## Table 5. Source characteristics of the VNIIM and the BIPM

- *Build-up cap*. The transfer chamber was supplied with a build-up cap for use in these radiation beams. This was screwed into place for all measurements of ionization current.

- *Humidity, temperature and pressure*. During calibration, the relative humidity was in the range 40 % to 60 % at the VNIIM. At the BIPM it was 20 % to 30 % for the measurement in <sup>137</sup>Cs and 45 % to 50 % for the measurement in <sup>60</sup>Co. No correction for humidity was applied to the current measured by the chamber. The air temperature was between 18 °C and 22 °C at the VNIIM; at the BIPM it was about 20 °C in the <sup>137</sup>Cs beam and 21 °C in the <sup>60</sup>Co beam. During each series of measurements, the air temperature was stable to better than 0.05 °C at the VNIIM and to 0.03 °C at the BIPM. The ambient air pressure varied between 95 kPa and 105 kPa at the VNIIM and between 100 kPa and 102 kPa at the BIPM. The measured ionization current was normalized to 293.15 K and 101.325 kPa.

- *Collecting voltage*. A collecting voltage of 350 V (positive polarity) was applied to the chamber in each laboratory

- *Measurement of charge*. The charge *Q* collected by the chamber was measured using the BIPM or the VNIIM electrometer as appropriate. The VNIIM standard electrometer, type B7-45 of Russian manufacture, was compared at the VNIIM with a UNIDOS (PTW-Freiburg) measuring

system. A systematic charge difference of almost 0.5 % was measured. Subsequently all the transfer chamber measurements were made at the VNIIM using the standard electrometer; earlier measurements were corrected to allow for this difference.

- *Reproducibility of measurements*. The short-term relative standard deviation of the mean ionization current, measured with the transfer chamber, was estimated at the VNIIM to be 0.03 % in the 1200 GBq <sup>137</sup>Cs beam, 0.09 % in the 140 GBq <sup>137</sup>Cs beam and 0.1 % in the <sup>60</sup>Co beam (7 series of 10 measurements). At the BIPM the corresponding values are 0.03 % in the <sup>137</sup>Cs beam and 0.02 % in the <sup>60</sup>Co beam (4 series of 30 measurements).

# 3.2 Other Factors

- *Recombination*. No correction was applied for incomplete ion collection: the volume recombination is negligible for this type of chamber for air kerma rates near 5 mGy·s<sup>-1</sup> and the initial recombination is the same in the two laboratories.

- *Leakage current*. The measured current was corrected for the leakage current of the transfer chamber. At the BIPM this was less than 0.01 % for <sup>60</sup>Co and up to 0.1 % for <sup>137</sup>Cs for which the air kerma rate is smaller by a factor of 100 than that in the <sup>60</sup>Co beam.

- *Stem scattering effect*. No correction for the stem scattering effect was applied at either laboratory.

- *Radial non-uniformity of the beam*. No correction for radial non-uniformity over the section of the transfer chamber was made to the results obtained at either laboratory. (In the BIPM beams, this effect is less than 0.01 % for this type of chamber.)

# 4. **Results of the comparison**

The result of the indirect comparison,  $R'_{\kappa}$ , is expressed in the form

$$R'_{K} = N_{K_{\text{VNIIM}}} / N_{K_{\text{BIPM}}} , \qquad (3)$$

where  $N_K$  is the calibration factor of the transfer chamber determined at each laboratory. The relevant  $\dot{K}$ , I and  $N_K$  values obtained are shown in Table 6 together with  $R'_K$  and its relative combined standard uncertainty  $u_c$ .

The chamber was calibrated at the BIPM in April 1997. At the VNIIM it was calibrated in March 1997 before the comparison and in May to October 1997 after the comparison. The values quoted for the VNIIM are the mean of the results obtained before and after the comparison.

| Source                           | Laboratory | $\dot{K}_{\rm lab}^{(1)}$ | $I_{\rm lab}^{(1)}$ | $N_{K}$                 | 100 <i>u</i> <sub>c</sub> | $R'_{\kappa}$ | 100 <i>u</i> <sub>c</sub> |
|----------------------------------|------------|---------------------------|---------------------|-------------------------|---------------------------|---------------|---------------------------|
|                                  |            | $/ \mu Gy \cdot s^{-1}$   | / pA                | $/ Gy \cdot \mu C^{-1}$ |                           |               |                           |
| <sup>137</sup> Cs <sup>(1)</sup> | VNIIM      | 2.916                     | 0.059 34            | 49.14 <sup>(3)</sup>    |                           |               |                           |
|                                  | VNIIM      | 41.76                     | 0.849 1             | 49.18 <sup>(3)</sup>    | 0.42                      | 0.996 1(4)    | 0.31                      |
|                                  | BIPM       | 21.175                    | 0.429 1             | 49.35                   | 0.37                      |               |                           |
| <sup>60</sup> Co <sup>(2)</sup>  | VNIIM      | 2.644                     | 0.054 08            | 48.89 <sup>(3)</sup>    | 0.43                      |               |                           |
|                                  | BIPM       | 4618.1                    | 94.657              | 48.79                   | 0.36                      | 1.002 0       | 0.28                      |

Table 6. Results of the air kerma comparisons using the VNIIM transfer chamber

<sup>(1)</sup> The half life of <sup>137</sup>Cs is taken as (11 050 d, u = 40 d) [7]. The BIPM values are referenced to 1997-01-01, 0h UT. <sup>(2)</sup> The half life of <sup>60</sup>Co is taken as (1 925,5 d, u = 0,5 d) [8]. The BIPM values are referenced to 1997-01-01, 0h UT. <sup>(3)</sup> The result is the mean of the calibration factors measured at the VNIIM before and after the measurements at the BIPM. <sup>(4)</sup> The result uses the mean of the calibration factors in both <sup>137</sup>Cs beams at the VNIIM.

Contributions to the relative standard uncertainty in  $N_K$  and in the comparison result  $R'_{\kappa}$  are shown in Table 7a for <sup>137</sup>Cs and Table 7b for <sup>60</sup>Co.

| Table 7a. Estimated relative standard uncertainties in the calibration factor, $N_K$ , |
|----------------------------------------------------------------------------------------|
| of the transfer chamber and the comparison result, $R'_{\kappa}$ in <sup>137</sup> Cs  |

|                                        | Uncertainty in      |           | Uncertainty in          |           | Uncertainty in |           |
|----------------------------------------|---------------------|-----------|-------------------------|-----------|----------------|-----------|
|                                        | $N_{K_{ m VNIIM}}$  |           | $N_{K_{\mathrm{BIPM}}}$ |           | $R'_{K}^{(1)}$ |           |
| Relative standard uncertainty in the   | $100  s_i$          | 100 $u_i$ | $100 \ s_i$             | 100 $u_i$ | $100  s_i$     | 100 $u_i$ |
| measurement of                         |                     |           |                         |           |                |           |
| Air kerma rate                         | 0.06                | 0.41      | 0.04                    | 0.37      | 0.07           | 0.28      |
| Ionization current of transfer chamber | 0.09 <sup>(2)</sup> | -         | 0.03                    | -         | 0.09           | -         |
| Chamber position                       | 0.02                | 0.02      | 0.01                    | 0.02      | 0.02           | 0.03      |
| Beam spectra difference                | -                   | -         | -                       | -         | -              | 0.03      |
| Humidity difference                    | -                   | -         | -                       | -         | -              | 0.03      |
|                                        |                     |           |                         |           |                |           |
| Relative standard uncertainty          |                     |           |                         |           |                |           |
| quadratic summation                    | 0.11                | 0.41      | 0.05                    | 0.37      | 0.12           | 0.28      |
| combined uncertainty                   | 0.42                |           | 0.37                    |           | 0.31           |           |

<sup>(1)</sup> The uncertainty for the ratio of air kerma rate is taken from Table 2.

 $^{(2)}$  This value relates to the smaller source. Using the larger activity source reduces this uncertainty value to 0.03 %.

|                                        | Uncertainty in |                    | Uncertainty in          |           | Uncertainty in          |           |
|----------------------------------------|----------------|--------------------|-------------------------|-----------|-------------------------|-----------|
|                                        | N              | K <sub>VNIIM</sub> | $N_{K_{\mathrm{BIPM}}}$ |           | $R'_{K}$ <sup>(3)</sup> |           |
| Relative standard uncertainty in the   | $100  s_i$     | 100 $u_i$          | $100  s_i$              | 100 $u_i$ | $100  s_i$              | 100 $u_i$ |
| measurement of                         |                |                    |                         |           |                         |           |
| Air kerma rate                         | 0.06           | 0.41               | 0.02                    | 0.36      | 0.07                    | 0.25      |
| Ionization current of transfer chamber | 0.10           | -                  | 0.02                    | -         | 0.10                    | -         |
| Chamber position                       | 0.02           | 0.02               | 0.01                    | 0.02      | 0.02                    | 0.03      |
| Beam spectra difference                | -              | -                  | -                       | -         | -                       | 0.03      |
|                                        |                |                    |                         |           |                         |           |
| Relative standard uncertainty          |                |                    |                         |           |                         |           |
| quadratic summation                    | 0.12           | 0.41               | 0.03                    | 0.36      | 0.12                    | 0.25      |
| combined uncertainty                   | 0.             | .43                | (                       | 0.36      |                         | 0.28      |
|                                        |                |                    |                         |           |                         |           |

Table 7b. Estimated relative standard uncertainties in the calibration factor,  $N_K$ , of the transfer chamber and the comparison result,  $R'_K$  in <sup>60</sup>Co

<sup>(3)</sup> The uncertainty for the ratio of air kerma rate is taken from Table 3.

#### 5. Conclusion

The same VNIIM standards are used for air kerma determinations in both <sup>137</sup>Cs and <sup>60</sup>Co radiation beams. Two standards are used and these agree to 0.08 % and 0.11 % respectively in the two VNIIM radiation beams. For the comparisons with the BIPM standards, a single VNIIM transfer standard, of small volume was used in both radiation beams. The result for the <sup>137</sup>Cs comparison,  $R_K$  (<sup>137</sup>Cs) = 0.996 1, is compatible with the standard uncertainty for the comparison while the result for <sup>60</sup>Co radiation,  $R_K$  (<sup>60</sup>Co) = 1.002 0, is in good agreement and lies within the uncertainty.

Four other national laboratories have made <sup>137</sup>Cs comparisons with the BIPM standard: the results are shown in Table 8 together with those for <sup>60</sup>Co comparisons with the same laboratories.

| Laboratory        | $R_{K} = K_{\text{Lab}} / K_{\text{BIPM}}$ |                   |                  |                   |  |  |  |
|-------------------|--------------------------------------------|-------------------|------------------|-------------------|--|--|--|
|                   | 137                                        | Cs                | <sup>60</sup> Co |                   |  |  |  |
|                   | $R_K$                                      | 100 $\sigma_{RK}$ | $R_K$            | 100 $\sigma_{RK}$ |  |  |  |
| BEV [9]           | 0.994 5                                    | 0.28              | 1.002 9          | 0.25              |  |  |  |
| OMH [10]          | 0.995 4                                    | 0.30              | 1.002 5          | 0.24              |  |  |  |
| NIST [11, 12]     | 1.001 7                                    | 0.42              | 0.998 9          | 0.40              |  |  |  |
| BNM-LPRI [13, 14] | 1.001 9                                    | 0.30              | 1.002 5          | 0.26              |  |  |  |
| VNIIM             | 0.996 1                                    | 0.31              | 1.002 0          | 0.28              |  |  |  |

Table 8. Comparison of national laboratory results for air kerma

Table 8 shows that the spread of the results for <sup>137</sup>Cs is almost twice as large as that for <sup>60</sup>Co. This suggests that some correction factors related to air kerma measurements in a <sup>137</sup>Cs beam are difficult to evaluate. Of particular importance is the determination of the correction for attenuation and scattering in the chamber wall. When this correction is obtained by extrapolation from measurements made with a wall thickness far in excess of the maximum range of the electrons, it may well be underestimated [15].

Figure 1 shows the results of all air kerma comparisons made at the BIPM in  $^{60}$ Co radiation. The standard deviation of the comparisons with the sixteen national primary laboratories is 0.17 %. The values relating to recent comparisons are given in [16].





Although the result for the comparison of air kerma in <sup>60</sup>Co radiation is very satisfactory, it may be possible to improve that for the air kerma determination in a <sup>137</sup>Cs beam.

Prior to 1992, the VNIIM used a different air kerma standard. This was a cylindrical cavity ionization chamber, C40/4, and was used for international comparisons within the framework of the COMECON treaty (now called COOMET). Since the results of comparisons made in 1990 between the OMH, UDZ, ASMW, NIM and the VNIIM are linked to those of the BIPM through the OMH/BIPM comparison, they provide indirect values of the ratio  $K_{\text{VNIIM}}/K_{\text{BIPM}}$  for <sup>60</sup>Co of 0.994 and for <sup>137</sup>Cs of 0.985. The uncertainties of these values are in the range 0.4 % to 0.5 %. The direct values obtained in the current comparison are a better link to the BIPM, but the indirect results agree with the direct ones to within two combined standard uncertainties.

#### REFERENCES

- [1] VILLEVALDE N.D. (1993) The investigation of the Standard GET 8-82, Report VNIIM.
- [2] PERROCHE A.-M. and BOUTILLON M. (1995) Determination of air kerma for <sup>137</sup>Cs gamma rays, *BIPM Com. Cons. Etalons Mes. Ray. Ionisants, Section (I)*, 1995-3 (Paris: Offilib).
- [3] BOUTILLON M. and NIATEL M.-T.(1973) A study of a graphite cavity chamber for absolute measurements of <sup>60</sup>Co gamma rays, *Metrologia*, **9**, 139-146.
- [4] BIPM, Constantes physiques pour les étalons de mesure de rayonnement, *BIPM Com.Cons. Etalons Mes. Ray. Ionisants, Section (I)*, 1985, **11**, p. R45 (Paris: Offilib).
- [5] AGLINCEV K.K. and OSTROMYKHOVA G.P.(1959) Ionization distribution along the gamma ray beam and a realisation of the Röntgen using a standard ionization chamber (In Russian), Атомная энергия, **5**, N<sup>o</sup> 1, 63-66.
- [6] BOUTILLON M. (1996) Measuring conditions used for the calibration of ionization chambers at the BIPM, *Rapport BIPM-96/1*, 19 pages.
- [7] NICHOLS A.L. (1990) X- and gamma-ray standards for detector efficiency calibration, *Nucl.Instr. Meth. in Phys.Res.*, A238, 467-473.
- [8] IAEA (1991) X- and gamma-ray standards for detector calibration, IAEA TECDOC-619.
- [9] ALLISY-ROBERTS P.J., BOUTILLON M. and WITZANI, J. (1995) Comparison of the standards of air kerma of the BEV and the BIPM for <sup>137</sup>Cs and <sup>60</sup>Co γ rays, *Rapport BIPM-95/5*, 9 pages.
- [10] PERROCHE A.-M., BOUTILLON M. and CSETE I. (1994) Comparison of the standards of air kerma of the OMH and the BIPM for <sup>137</sup>Cs and <sup>60</sup>Co γ rays, *Rapport BIPM-94/13*, 10 pages.
- [11] LEITNER A., WITZANI J., BOUTILLON M., ALLISY-ROBERTS P., DELAUNAY F., LEROY E., LAMPERTI P., STRACHOTINSKY C. and CSETE I.(1997) International comparisons of air kerma standards in <sup>137</sup>Cs radiation, *Metrologia*, 34,169-175.
- [12] ALLISY-ROBERTS P.J., BOUTILLON M. and LAMPERTI P.J. (1996) Comparison of the standards of air kerma of the NIST and the BIPM for <sup>60</sup>Co γ rays, *Rapport BIPM-96/9*, 8 pages.
- [13] ALLISY-ROBERTS P.J., BOUTILLON M., DELAUNEY F., LEROY E. and OSTROWSKY A. (1996) Comparison of the standards of air kerma and absorbed dose of the BNM-LPRI and the BIPM for  $^{137}$ Cs  $\gamma$  rays, *Rapport BIPM-96/6*, 8 pages.

- [14] PERROCHE A.-M., BOUTILLON M., DAURES J., DELAUNAY F., LEROY E., OSTROWSKY A. and CHAUVENET B. (1994) Comparison of the standards of air kerma and absorbed dose of the LPRI and the BIPM for  $^{60}$ Co  $\gamma$  rays, *Rapport BIPM-94/6*, 10 pages.
- [15] ROGERS D.W.O. and BIELAJEW A.F. (1990) Wall attenuation and scatter corrections for ionchambers: measurements versus calculations, *Phys. Med. Biol.*, **35**, 1065-1078.
- [16] QUINN T.J. (1996) Results of recent international comparisons of national measurement standards carried out by the BIPM, *Metrologia*, **33**, 271-287.

June 1998