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Abstract 

By taking advantage of a recursion formula due to Euler for a(n), the sum of 
the divisors of n, we deduce an explicit expression for A = a(n+ 1) - a(n-I) 
which involves only quantities that can be readily evaluated. If A = 2, then 
n ± 1 are twin primes. 

1. Some generalities 

If two integers, such as 

p = n - 1 
I 

and P2 = n + 1, (1) 

are prime numbers, then PI and P2 are called twin primes. Examples are 5 and 7, 29 and 
31 or 101 and 103. We first want to show that twin primes (for PI > 3) are always of the 
form 

P2,I = 6k ± 1, (2) 

with k = 1, 2, 3, .... 

From the product 

(n-1) n (n+1?, : J nS-1 J 3! 
" " , 

it follows, since n-1 and n+ 1 are assumed to be prime numbers and binomial coefficients 
are integers, that n can be divided by 6. This proves the form (2) for twins. In addition, 
numbers of the form 

n2 I = 6k ± 3 (3) , 

cannot be prime as they are divisible by 3. Hence, "triplet" primes of the type n, n+2, 
n+4 do not exist. The only exception (3, 5, 7) can be discarded by requiring that n > 3. 

Relation (2) has a more general meaning since in fact any prime number can be written 
in this way. To see this, we continue our decomposition by considering numbers of the 
form 

6k ± 5 = "+ 1 (mod 6). (4) 
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These may be prime, but are already covered by (2). Since the forms (2) and (4) include 
all odd numbers modulo 6, there are no other possibilities to consider and (2) turns out 
to hold for any prime number. Obviously, not all integers k produce primes (or even 
twins), but all primes (and twins) are of the form (2). 

2. Euler's surprising relation 

For a natural number n it is usual to denote by o(n) the sum of its divisors, including 1 
and n. Thus, for n = 8, with the divisors 1, 2, 4 and 8, we have 0(8) = 15. For a prime 
number p ~ 2, since it is divisible only by 1 and p, we have 

0(P) = p + 1 . 

It is practical to define 0(1) = 1; the meaning of 0(0) will be discussed later. 

In 1747 Euler [1], thanks to his unique sagacity, detected that the numbers o(n) 
actually follow a recurrence formula (see also [2] or [3]). It is rather complicated and 
can be written as 

o(n) = o(n-l) + 0(n-2) - 0(n-5) - 0(n-7) 
+ 0(n-12) + 0(n-15) - 0(n-22) - 0(n-26) 
+ 0(n-35) + 0(n-40) - 0(n-51) - 0(n-57) 
+ 

Euler himself rightly called this expression "une loi tout extraordinaire". 

The sum in (6) ends if the argument of 0 becomes negative, sinr.e o(n) = 0 for n < O. 
However, if the last term is 0(0), then, as Euler has shown, we have to put 

0(0) = n, 

if the decomposition starts at n. 

The sequence of integers occurring in the recurrence formula (6), namely 

II = 1, 2, 5, 7, 12, 15, 22; 2'6;'35, 40;,51, 57, ... , 

becomes less mysterious if we form the first differences 

1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, ... , 

in which Euler has seen an alternate sequence of natural numbers (1, 2, 3, ... ) and of 
odd numbers (3, 5, 7, ... ). This allows us to write, for j = 0, 1, 2, ... , 

[j;l ] [j;2 ] 

llj = ~ k + ~ (2k-l) 
k=l k=l 

= ~ [j;l ] [j;3J + [j;2 ] 2 

(5) 

(6) 

(7) 

(8) 

(9) 
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where [x] denotes the largest integer not exceeding x. All integers TJ. are pentagonal 
numbers, thus of the form (m/2) (3m ;: 1), with m = 1, 2, ... . J 

By means of the quantities TJj Euler's recursion can be brought into the form 

J 
o(n) = ~ Sj o(n - '1.) , (10) 

j=o J 

where S. = (_1)[j/2) gives the required sequence (+ + - -) of signs, an abbreviation we 
shall alio use later. The upper limit J is such that TJJ :S n, but TJJ+l > n. Note that (10) is 
just a more compact version of (6). 

At first sight, Euler's recursion formula, as stated by (6) or (10), seems to have little to 
do with twin primes. However, relation (5) gives a hint to the contrary. It is in fact 
difficult to understand why Euler, who used to follow the remotest indications, 
apparently did not pursue this track any further. 

Of course, as given above the relation is of no direct use, but the recurrence itself may 
allow us to "work down" the sum until there remain only terms of the form "0(0)". All 
which follows is based on (6) and is an attempt to draw some useful conclusions from 
this remarkable formula, especially for prime numbers. 

3. A first approach to the twin problem 

If we consider the difference 

b.(n) == o(n+ 1) - o(n-l) , (11) 

then twin primes of the form PI = n-l and P2 = n+ 1 will yield 

b.(n) = n+2 - n = 2. (12) 

Of real interest for us is the inverse relation, namely the conclusion that b. = 2 implies 
the presence of a pair of primes. This is likely to be true, and supported by an extended 
inspection of listed values of o(n); a complete formal proof is not yet available, but 
should be possible. In what follows we assume this inverse relation to hold. 

Let us first show by an example how the recurrence can be used to arrive at a 
numerical result. This is cumbersome, but illustrates the procedure. We choose the 
simplest case when, according to (2), we can hope to find a twin prime, namely k = 1, 
thus n = 6. By repeated application of (6) and (7) we then find 

b.(6) = 0(7) - 0(5) 

= {0(6) + 0(5) - 0(2) - 7}- 0(5) 

{0(5) + 0(4) - 0(1)} - {0(1) + 2} - 7 

{0(4) + 0(3) - 5} + {0(3) + 0(2)} - 2 - 9 

= {0(3) + 0(2)} + 2{0(2) + 0(1)} + 0(1) + 2 - 16 

= {0(2) + 0(1)} + 3{0(1) + 2} + 3 - 14 

= 0(1) + 2 + 4 - 5 = 2. 
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Similarly, one can verify (by lengthier calculations) that 

~(12) = 2 and ~(18) = 2. 

All this is in agreement with expectation, since (5, 7), (11, 13) and (17, 19) are prime 
pairs. 

It should be noted, however, that numerical values of o(n) are not used in the 
derivation of the results (13). All is based solely on Euler's recurrence. 

(13) 

It is clear that this direct approach, illustrated by the case of ~(6), is too cumbersome 
for practical use. Some progress can be made by paying attention to the way the final 
result is obtained, namely 

~(6) = 6.1 + 4.2 - 1.5 - 1.7, 
~(12) 35.1 + 26.2 - 11.5 - 6.7 + 1.12, (14) 
~(18) = 154.1 + 121.2 - 58.5 - 35.7 + 8.12 + 3.15 . 

Equation (14) gives us a first glimpse at the enigmatic structure of the unknown general 
expression for ~(6k) that we would like to know. 

4. A graphical method 

Since the algebraic "reduction" method illustrated above becomes rapidly too labotious, 
we have to look for a simpler alternative. Such a possibility is offered by a graphical 
method. It can be illustrated in the following way. 

To leave open the question of when to stop the process, the numbering is reversed, that 
is, we begin at n = 0 and end at n = N. Instead of (6) one then uses a scheme with a 
symbolic location quantity" which, in analogy with 0, has the property 

,(0) = ,(1) + ,(2) ,(5) - ,(7) 
+ ,(12) + ,(15) - ,(22) - ,(26) 
+ 

(15) 

where the arguments are the numbers TJ.. >- Of', • J 

Figure 1 shows the beginning of this scheme in graphical form. In the first column, with 
start (denoted by x) at n = 0, we indicate for all terms Ten) their location n. Positive 
contributions are shown by a full dot • and negative contributions by a circle. 

For n = 1 we proceed as for n = 0, putting a cross (x) on top of the second colum. We 
thus develop ,(1) according to 

,(1) = ,(2) + ,(3) 
+ ,(13) + ,(16) -
+ 

,(6) - ,(8) 
,(23) - ,(27) 

and note this graphically using the symbols • and 0 in the second column, as before. 
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Figure 1. Scheme for the graphical evaluation of the coefficients a (n) appearing in (17). 
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For n = 2 we have two contributions (one from n = 0, the other from n = 1) and hence 
we put a number 2 at the starting cross on top of column three. This is developed as 
previously, always by using the formal recurrence (here for n = 2) 

00 

T(n) = ! Sj T(n + fJJ . 
j=o J 

(16) 

This process is continued till we arrive at the number n for which we want to know 
o(n). We now have to remember Euler's rule that o(n) has to be put equal to n' if this 
location results from a development that started at n'. What counts is the "height of the 
fall" or the "size of the jump" which, in our graphical arrangement, is given by the 
difference between the start (noted by x) and the final position n. All the "decays" that 
"miss" the value n are ignored. 

Thus, we see immediately by looking, for example, at the horizontal line given at n = 7, 
that there are four intersections, with corresponding "heights" 7, 5, 2 and 1. With their 
respective indicated multiplicities -1, -2, 7 and 11 we find that, returning to 0, 

0(7) = - 1.7 - 2.5 + 7.2 + 11.1 = 8, 

as expected. In this way it is easy to obtain the coefficients <X necessary for the 
evaluation of l] 

o(n) = ! <Xl](n) fJ· (17) 
l] 

The sum extends over all integers 11 given in (8) or (9). The coefficients <X (n) found by 
this graphical method are listed in Table 1. l] f 

Table 1 - Coefficients <X (n) appearing in (17), for n ~ 16. l] 

n 11 = 1 2 5 7 12 15 

1 1 
2 1 1 
3 2 1 
4 3 2 
5 5 3 -1 
6 7 5 .: 1 ~" 

7 11 7 -2 -1 
8 15 11 -3 -1 
9 22 15 -5 -2 

10 30 22 -7 -3 
11 42 30 -11 -5 
12 56 42 -15 -7 1 
13 77 56 -22 -11 1 
14 101 77 -30 -15 2 
15 135 101 -42 -22 3 1 
16 176 135 -56 -30 5 1 

However, relation (17) is of limited utility as long as the coefficients have to be taken 
from a table. This would change if a formula were available for their evaluation. 
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5. An arithmetic approach 

A look at Table 1 immediately shows its simple structure: the coefficients in all columns 
are apparently the same (apart from sign); they are just shifted by Tl-1 positions (with 
respect to the column with Tl = 1), where the numbers Tl are those we first met in (8). 
The problem of the coefficients (X (n) is thus reduced to the explanation of a single new 
basic sequence, denoted pen), which is given numerically (for n :s; 20) in Table 2. 

Table 2 - The first numerical values of the sequence pen). 

n pen) n pen) n 

0 1 7 15 14 
1 1 8 22 15 
2 2 9 30 16 
3 3 10 42 17 
4 5 11 56 18 
5 7 12 77 19 
6 11 13 101 20 

A closer look at Table 1 also reveals the relations 

! (Xfj(n) = p(n). 
fj 

This leads directly to the basic recurrence 

pen) = p(n-1) + p(n-2) - p(n-5) - p(n-7) 
+ p(n-12) + p(n-15) - p(n-22) - p(n-26) 
+ 

pen) 

135 
176 
231 
297 
385 
490 
627 

(18) 

(19) 

A comparison with (6) shows that (19) is identical with Euler's recurrence relation for 
(J(n). This is quite surprising. The only difference lies in the initial condition which is 
now p(O) = 1. In fact, the two series (J(n) and pen) are quite different. In particular, we 
note that pen) is a monotonously increasing function of n, a feature which is not shared 
by (J(n). It will turn out that the deriVatiori' or (19) is the decisive step in our reasoning. 

It follows from (17) and (18) that (J(n) can also be given in terms of the sequence p by 
writing 

(J(n) = p(n-I).l + p(n-2).2 - p(n-5).5 - p(n-7).7 
+ p(n-12).12 + p(n-15).15 - p(n-22).22 - p(n-26).26 
+ 

Using the notation of (10), this can be expressed in the more condensed form 

(J(n) = ! SJ. pen - 11.) 11.· 
j J J 

(20) 

(21) 
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6. A direct attempt at locating twins 

It is known from (11) that to check the presence of twin primes we have to evaluate 

b.(n) = (J(n+ 1) - (J(n-l) 

and to see if it is equal to 2. For this purpose it should be possible to use the graphical 
method described above. This requires the determination of the coefficients which apply 
to the situation (J(N+ 1) - (J(N-l), with N = 6k. This has been done for some values of k. 
We do not reproduce the graphical plot (which is similar to Fig.!, although more 
involved). Instead, Table 3 lists the coefficients ~ (k) which allow us to evaluate 

I] 

b.(6k=N) = ! ~ (k) T), 
I] I] 

which is a development similar to that given in (17) for (J(n). 

Table 3 - Coefficients ~ (k) appearing in (22), for k ~ 6. 
I] 

k 1] = 1 2 5 7 12 15 22 26 

1 6 4 -1 -1 

2 35 26 -11 -6 1 

3 154 121 -58 -35 8 3 

4 573 463 -242 -154 45 20 -2 

5 1886 1555 -861 -573 193 96 -15 -4 

6 5667 4740 -2745 -1886 703 375 -75 -26 

This makes it possible to extend the results given in (14), but unfortunately still no 
simple structure in the coefficients becomes visible. To reach this goal, a more 
systematic approach is required. 

7. A stepwise procedure 

To evaluate b.(6k), we first determine from"(2"ij" 

(J(n ± 1) = ! Sj p(n-T). ± 1) T) .. 
j J J 

Since it is known from (2) that twin primes are necessarily of the form 6k ± 1, we 
readily obtain from (23), replacing n by 6k, the general expression 

b.(6k) = f (-1) [j/2) {p(6k-T),+ 1) - p(6k-T).-I)} T) .. 
j=O J J J 

This is our final result in the search for twin primes. In principle, its application is 
simple but we must first evaluate and store the two sequences 1]. and pen). 

J 

(22) 

35 

1 

(23) 

(24) 
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For TJ. we can use relation (9). If the surmised primes are located around n, it is 
suffiJient to determine TJ. to j = v'8n/3. For pen), evaluated by recurrence (19), we 

OJ max '1 bl -1'" have to carry on to n. nce these two sequences are aVaI a e, we can, J.or Increasmg 
values of k, evaluate Ll(6k) by means of (24). Whenever Ll = 2, we have a pair of twin 
primes. 

In retrospect, we can also explain the values listed in Table 3 simply by 

~IJ' (k) = Sj {p(6k-TJ/1) - p(6k-y I)} . 
J 

Thus, for k = 3 and j = 4, we find 

~7(3) = -1 {p(18-7+1) - p(18-7-1)} = -35, 

as expected. 

(25) 

It is useful to know that some values of k are not worth trying. Thus, in order to 
exclude the cases where 6k+l or 6k-l would be a mUltiple of 5, it can easily be seen that 
k must not end (in decimal notation) in the digits 1, 4, 6 or 9 (only k = 1 is allowed). 
This already eliminates 40 % of the trials. More sophisticated choices would be possible, 
but are hardly worth while. 

8. Some complements 

Among the many arrangements of prime numbers, twins are certainly the most popular 
ones, but there are others. Thus, the occurrence of primes in pairs of the form 

m = 1, 2, ... , 

is always possible. In addition, one may wish to single out some particular arrangement 
with three or more primes. Apart from twins (m = 1), pairs of the form 

(26) 

here called "cousinsll, may be of some interest. Pairs of the form (26) can also be written 
as , ;'i 

P2,1 = 3(2k+ 1) ± 2 . (27) 

Note that the IIcentresll of cousins, 6k+3, always lie in the middle between subsequent 
centres of possible twins, given by 6k. 

By analogy with (24), one arrives for cousins at the expression 

Ll'(6k+3) = ~ SJ' {p(6k-Tj.+5) - p(6k-Tj.+l)} Tj .. 
j J J J 

(28) 
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Whenever /1' = 4, we conclude that 6k+3 ± 2 are cousin primes. In this case, the 
restrictions on k (due to the divisibility of a prime candidate by 5) are different: checks 
can now be omitted if the final digit of k is 0, 4, 5 or 9. 

Some numerical calculations to check the above conclusions are planned; they will no 
doubt require special programming techniques. However, the main interest of the 
present study is not the numerical evaluation of prime pairs, but the very existence of 
an algebraic method which, at least in principle, makes it possible to find prime 
numbers without recourse to any kind of sieve method. 

This brief excursion into the territory of number theory is dedicated to the memory of 
my dear friend Herbert Gross (1936-1989) who, in 1961, became Associate Professor of 
Mathematics at the Montana State University, Bozeman, and, in 1967, Full Professor at 
the University of Zurich. Although best known to insiders for his deep results on 
quadratic forms in infinite-dimensional spaces, he also possessed an extended general 
knowledge, had a cunning humour and was always ready to take an active interest in 
new ideas. We lost with him an excellent mathematician and a wonderful man. 
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