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Abstract 

After a short review of modulo 2 counting, this technique 
is applied to the measurement of a dead time which does 
not lend itself to the usual measuring methods. The 
approach is based on the known exact form of the Poisson 
law modified by the presence of an extended dead time. 

1. Introduction 
f 

The use of correlation methods in nuclear physics, and in particular for 
problems related to radioactivity, is a rather well-established technique. 
For a short review, see e.g. [lJ or [2J. The approach has been used since 
the early sixties, but infrequently and by a small number of laboratories. 
The reasons for the somewhat limited success of the method seem to be both 
experimental and theoretical, but the present limitations may be overcome 
by new developments. In a way, this report is a first step in this 
direction. 

In the traditional application of the "correlation method" to activity 
measurements, the quantity measured is normally a covariance based on the 
number of pulses registered in two counting channels within a given time 
interval. Whenever the two series of events ar.~ correlated, for instance 
by the presence of pulses which have ·'a~'c-;mmon,Qrigin ("coincidences"), 
there exists a measurable correlation. In practice, the covariance is 
obtained by using a very large number of successive short measuring 
cycles. For the special situation where only a single series of pulses is 
available, the quantity measured and analyzed is a variance. In both cases 
the use of an on-line computer is necessary, but this is no longer an 
obstacle to the use of the technique. Much more serious is the fact that 
the corrections which account for dead time and parent-daughter decay are 
still known only essentially to first order [3J. This prevents an accurate 
analysis of correlation data obtained at high count rates. 

A possible way to overcome these difficulties is based on a variant of the 
original version proposed by Landaud and Mabboux as early as 1960 [4J. It 
concerns a single counting channel and takes advantage of the simple 
characteristics of modulo 2 counting. 
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If the two states corresponding to a modulo 2 counter are designated, 
rather arbitrarily, by +1 and -1, the series of incoming events can be 
represented by an associated random function x(t o) which changes state at 
the arrival of each pulse. This is shown in Fig. 1. 
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Fig. 1: Schematic representation of the arrival of random events (in a) 
and of the corresponding random function x(t), with values ±1 (in b). 

This type of "random telegraph signal" can readily be used to form 
a correlation function. For a given time interval t, the correlation 
function R(t) is defined by the expectation value 

R(t) (1) 

where to is an arbitrary starting time for the interval (see Fig. 1). 
If we realize that the product in (1) changes sign for each pulse arrival, 
we are led to 

co 

R(t) = L 
k=O 

(_l)k W (t) 
k 

(2) 

where Wk(t) is the probability for observing k events within an interval 
of duration t. As in modulo 2 counting only t.n.e parities of k are 
relevant,> the correlation function is ~~lso generally given by the 
relation 

R(t) Prob(k even) - Prob(k odd) (3a) 

By putting 

Prob(k odd) II(t) , 

which will be called parity function for short, one arrives, since any 
value of k is either even or odd, at the equivalent form 

R(t) = 1 - 2 II(t) (3b) 

This shows that, in the context of modulo 2 counting, determining a 
correlation function or a parity function is fully equivalent and requires 
the same measurements. 
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Since we are dealing here with original Poisson processes and distorted 
variants of them, it is clearly of interest to treat first the case of a 
simple Poisson process of rate p. It has long been known [5J that in this 
case the parity function and the correlation function take respectively 
the exact forms 

II(t) 1 -2pt 
- (1 - e ) 
2 

and (4a) 

R(t) -2pt e • (4b) 

A derivation of this basic result is given in the Appendix. 

2. Effect of a dead time 

Obviously, it is of little consequence whether we deal with II(t) or with 
R(t) in what follows. In view of the simple form of (4b) let us choose 
R(t). 

It was quickly recognized that the insertion of a dead time ~ in the 
original Poisson process modifies the simple form (4b) of the correlation 
function. The problem was treated by Landaud [6J who found an 
approximation expressed by 

R(t) = e-2p(1+p~)t • (5) 

Simple checks of some limiting cases (t = 0, t + m or p~ + 0) lead 
to the expected results, but for values of t which are of the order of the 
dead time ~, the expression (5) does not look trustworthy. Indeed, one 
would expect some structure showing up which reflects the minimum allowed 
distance between pulses. As will be shown later even the first-order term 
in a series expansion for (5) is incorrect. 

It is worthwhile to try to generalize (4b) for several reasons. In 
contrast to the situation in the sixties, rigorous expressions are now 
available. for the modified Poisson p-rO'babilit'tes Wk(t) that k events occur 
in time t. This is true for both types of dead time. Provided that such 
formulae allow determinations of R(t), a comparison with the directly 
measured value can be made. By expressing the original count rate p in 
terms of the measured one, the dead time becomes the sole unknown. An 
appropriate arrangement of the formulae should make it possible to use the 
measured value of R(t) for a determination of the value of the 
inaccessible dead time ~, transforming a disturbing effect into a useful 
measuring technique. This is roughly the program we have in mind. Its 
realization depends, of course, on whether we succeed in carrying out the 
necessary algebra. The developments to be presented below show that this 
can be done. 

For the case of an extended dead time the rearrangements are surprisingly 
simple, which is why we tackle this case first. The formal derivations 
necessary for a non-extended dead time are more involved and will be 
described in Part 11. 
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3. Statistics for an extended dead time and evaluation of IT(t) 

For a rigorous description of the situation it is obvious that we must 
return to the exact expressions which describe the statistics of a Poisson 
process of rate p which has been distorted by a dead time ~ of the 
extended type. 

The derivation of the required basic formula has a rather long and 
tortured history (for a summary see [7]); the final clarification is due 
to Libert [8]. 

Since in our experimental arrangement the periods of measurement begin 
independently of the arrival of pulses, we have what is described as an 
equilibrium process. In this case the probability of observing k events in 
a time interval t is given by 

= 
K+l (-l)j-k 
I (6) 

j=k k! (j-k)! 

where 
T = l.L-nx, n 

with l.L = pt and x = p~ , 

while K is the largest integer below t/~. 

Since Wk(t) is a function of the parameter K which, in turn, is related to 
the duration t of a time interval by 

K~ < t ~ (K+l)~ , 

it is useful first to list some special cases of (6) in tabular form in 
ascending K. Table 1 shows this for values of K up to 3. 

,." "rt ,---, 
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K k 

o o 1 - \-Le-x 

1 

1 o 1 2 2 1 - \-Le-x + - (\-L-x) e- x 
2 

1 \-Le-x - (\-L-x)2 e-2x 

2 1 2 2 - (\-L-x) e- x 
2 

2 0 
1 2 -2x 1 3 -3x 1 - \-Le -x + - (\-L-x) e - - (\-L-2x) e 
2 6 

1 \-Le-x 2 -2x 1 3 -3x (\-L-x) e + - (\-L-2x) e 
2 

2 
1 2 -2x 1 3 -3x - (\-L-x) e - - (\-L-2x) e 
2 2 

3 
1 3 -3x - (\-L-2x) e 
6 

3 0 
1 2 -2x 1 3 1 -4x 1 \-Le-x -3x It - + - (\-L-x) e - - (\-L-2x) e + - (\-L-3x) e 
2 6 24 

1 \-Le-x 2 2 1 3 -3x 1 It -4x .- (\-L-x) e- x + - (\-L-2x) e - - (\-L-3x) e 
2 6 

2 
1 2 "~1'-'" . 

-3x 1 It -4x -2x ; 3 - (\-L-x) e - - (\-L-2x) e + - (\-L-3x) e 
2 2 4 

3 
1 3 -3x 1 It -4x - (\-L-2x) e -:- (\-L-3x) e 
6 6 

4 1 It -4x - (\-L-3x) e 
24 

Table 1 - Explicit form of the probabilities Wk(t) given in (6), Jor 
measurement times t not exceeding four time~ the dead time ~. 
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From the formulae of Table 1 it is easy to obtain the values of the parity 
function net) for odd k. These are shown in Table 2. 

K n(t) = Prob(k odd) 

0 fl e-x 

1 fl e-x - ( fl-x)2 e -2x 

2 fl e-x - 2 2 2 3 -3x (fl-x) e- x + - (fl-2x) e 
3 

2 2 -3x 1 Lt- -4x 3 fl -x -2x 3 e (fl-x) e + - (fl-2x) e - - (fl-3x) e 
3 3 

Table 2 - Expressions for the parity function net) which gives the 
probability that k is odd in t, for K ~ 3. 

It is not too difficult to deduce by induction from these results the 
general formula 

K 
n(t) = I ak [(fl-kx) e-x]k+1 , 

with 

The expression for ~ may 

[k/2] 
I 

j=O 

k=O 

(1+2j)! (k-2j)! 

be simplified. U sing the relat~on 

1 2k 

(21) 1+2j = k+1 ' 

(7a) 

which follows from an identity given "irl 19], ~ can be brought into the 
form 

~ = 
(-2)k 

(k+l) ! 

Evaluation of the first coefficients yields 

- 1 , 

2/3 - 1/3 , --

a4 = 2/15 , - 2/45 • 

(7b) 
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4. Evaluation of the correlation function 

By substituting (7a) into (3b) we readily obtain for the correlation 
function 

K 
R(t) = 1 - 2 I ~ [(~-kx) e-x]k+1 • 

k=O 
(8) 

We now wish to express the quantities ~ and x appearing in (8) in terms 
of the experimentally measured mean value m1 • To do this it is helpful 
to count the measurement time in units of the dead time ~, the numerical 
value of which we want to determine, so we put t = V~. 

Since the measured count rate is given by r = pe-x, it follows that 

and 1 ikewi se 
-x x e 

pt e-x = 

= m1 
v 

rt 

The correlation function (8) can therefore be written as 

K 
R(t) = 1 - 2m1 .I a j mt (1 - :)j+1 

J=O 

Expanding R(t) as a power series in m1 gives 

K+1 

R(t) 1 - 2m1 + I 
k=2 

Comparison with (9) yields the coefficients bk of lowest order 

- for k = 2: 

provided K ~ 1 

- for k = 3: 

provided K ;;. 2 

- for k = 4: 

provided K ~ 3 

= 

= 

Le. v:> 1 

Le. v;;' 2 

3 4 
- 2a3 (1 - -) 

v 

Le. v ~ 3 

~I ~,. .-~-, ?ti 1 
= 2 (1 ..;. _)2 

v 

4 2 
(1 - _)3 

3 v 

= 
2 3 - (1 __ )4 
3 v 

(9) 

(10) 

(11) 

(12) 

(13) 
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- for k = 5: 

= 
4 4 

(1 - _)5 
15 v 

(14) = 

provided K > 4, i.e. v > 4 • 

Whenever the proviso is not respected, we have to put bk = O. 

The influence of the dead time is best seen by comparing the measured 
correlation with the one that would correspond to an undisturbed Poisson 
process with the same count rate. In this case, i.e. for ~ = 0 and mean 
value m1' the relation (~ allows us to expect for the correlation 

- 2m1 
= e - 1 

4 2 4 
2m1 + 2mf - - mr + - mi - - m5 

3 3 15 1 

Note that Ro( t) requires for its evaluation only the knowledge of the 
measured value m1. 

We can now form the difference 

co 

t.(t) 1: = R (t) - R(t) o = 

k=2 

(15) 

(16) 

A comparison of (15) with (10) explains the absence of Co and cl in (16). 
To find general expressions for the first coefficients ck' term by term 
differences are formed using the values bk , given in (11) to (14), and the 
corresponding coefficients in (15). 

Up to fifth order, the new coefficients ~ are 

c2 = 2 

1 2 2 
2 - b2 = 2[ 1 - (1 - -) ] = (2v - 1) 

v v2 

for v .;;; 1 
(17) 

v ) 1 

~, ~ ,"-, :1; 

'4 
for v .;;; 2 , 

3 
(18) 

4 4 r-2 - 8 
b3 = (1 __ )3] = - (3v2 - 6v + 4), v ) 2 

3 3 v 3v3 

2 
= - for v .;;; 3 , 

3 
2 2 

[1- (1 - :')4] b4 = (19) 
3 3 v 

2 
(4v3 - 18v2 + 36v - 27) = v ) 3 

v4 
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15 

9 

-~- bS = -~ [1 - (1 _~)5] 
15 15 v 

- 16 
= -- (SV4 40v3 + 160v2 - 320v + 256) 

lSv5 

, for v < 4, 

(20) 

v ;;. 4 • 

For convenience, some of the coefficients given by (17) to (20) are shown 
in numerical form in Table 3. 

v 

~ 1.0 
1.1 

1.2 
1.3 

1.4 
1.5 

1.6 
1.7 

1.8 
1.9 

2.0 

2.2 
2.4 

2.6 
2.8 

3.0 

3.5 
4.0 

4.5 
5.0 

5.5 
6.0 

6.5 
7.0 

7.5 
8.0 

c2 

2.0000 

1.9835 
1.9444 

1.8935 
1.8367 

1.7778 
1. 7188 

1.6609 
1.6049 

1.5512 
1.5000 

1.4050 

1.3194 
1.2426 

1.1735 
1.1111 

0.9796 

0.8750 
0.7901 

0.7200 
0.6612 

0.6111 
0.5680 

0.5306 
0.4978 

0.4688 

- 1.3333 

- 1.3333 
- 1.3333 

- 1.3333 
- 1.3333 

- 1.3333 
- 1.3333 

- 1.3333 
- 1.3333 

- 1.3333 
- 1.3333 

- 1.3323 

- 1.3272 
- 1.3169 

- 1.3022 
- 1.2840 

1.2284 

- 1.1667 
- 1.1047 

- 1.0453 
- 0.9897 

- 0.9383 
- 0.8909 

- 0.8474 
- 0.8075 

- 0.7708 

0.6667 

0.6667 
0.6667 

0.6667 
0.6667 

0.6667 
0.6667 

0.6667 
0.6667 

0.6667 
0.6667 

0.6667 

0.6667 
0.6667 

0.6667 
0.6667 

0.6664 

0.6641 
0.6584 

0.6496 
0.6382 

0.6250 
0.6106 

0.5956 
0.5803 

0.5649 

- 0.2667 

- 0.2667 
- 0.2667 

-:- 0.2667 
- 0.2667 

- 0.2667 
- 0.2667 

- 0.2667 
- 0.2667 

- 0.2667 
- 0.2667 

- 0.2667 

- 0.2667 
- 0.2667 

- 0.2667 
- 0.2667 

- 0.2667 

- 0.2667 
- 0.2667 

- 0.2666 
- 0.2663 

- 0.2656 
- 0.2644 

- 0.2628 
- 0.2608 

- 0.2583 

Table 3 - Numerical values of the coefficients c2 to Cs 
appearing in (16), for v ~ 8. 



10 

If m1 is not sufficiently small compared to unity, higher values of k may 
be needed in (16). The coefficients ck are given by the general formula 

(_2)k k-1 k 
~ = [1 - (1 - -) ] (21) 

k! v + 

0 for 0; < 0 
where ( 0;)+ - (22) 

0; 0; ;;. 0 

Note that for v < 1 only a lower limit can be determined for the unknown 
dead time 'to 

5. Measurement of the dead time 

The practical determination of the dead time may be based on the relation 
(16), in which R(t) is replaced by the experimental value R exp 

For obvious reasons the experimental conditions must be chosen so that the 
mean value m1 is small compared to unity, and the measurement time t (per 
cycle) should be of the same order as the unknown dead time 'to 

A numerical example is useful to illustrate the procedure. Let us assume 
that the measured values are 

t = 5.1 ~s, m1 = 0.0973 and II = 0.0957. exp (23) 

With (3b) this corresponds to Rexp = 0.8086 and by means of (16) one finds 
for the experimental difference 

!::, 
exp = 

-2m 
e 1 - R 

exp = 0.014 56 

If we restrict consideration to the first term in (16), a rough estimate 
of c2 (in fact a lower limit) may be., ~tained' from 

= 1.5 

From Table 3 it follows that this implies v ~ 2.0. 

For c2 given by (17) the following table shows values of !::'(t) calculated 
by (16) for particular values of v. 

v 2 c2m1 !::'(t) 

1.60 0.016 27 0.015 10 
1.65 0.016 00 0.014 83 
1. 70 0.015 72 0.014 55 
1.75 0.015 46 0.014 29 
1.80 0.015 19 0.014 02 
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In the range considered, c3 and c4 are constant and the contribution of Cs 
is negligible. Comparison with ~exp leads to v = 1.70, which gives for the 
dead time, assumed extended, the value 

't = t/v 3.0 ~s. 

b) An exact evaluation 

It is worthwhile to realize that, in the present case of an extended dead 
time, the series development just described is not necessary and that it 
can be replaced by a rigorous method. This solves the possible problems 
arising from poor convergence and truncation. 

For this purpose let us start from (7a). We note that the parity function 
can also be expressed in the form 

K k Jk+1 
TI(t) I ~ [(1 - -) m 

k=O 
v 1 

ID (_2)k 
I [(1 -

k't Jk+1 
-)+ m1 ' (24) 

k=O (k+1) 1 t 

where (22) guarantees that the sum in (24) is actually finite since fpr 
k > K all contributions vanish. As the measured parity TIexp ' the mean' 
value m1 and the time interval t are all known from direct measurements, 
the dead time is the only unknown quantity and can therefore be determined 
from (24). If t does not exceed 't by a factor of more than about three, 
the numerical evaluation is simple and can readily be performed. On the 
other hand, (24) may be programmed and then yields 't directly. 

In what follows this is illustrated numerically using again the data in 
(23). For the chosen trial values of 't we obtain the parities listed 
below. 

't (~s) TI(t) , calculated from (24) 

2.90 ., ~'O~095'':>4 
2.95 0.095 62 
3.00 0.095 69 
3.05 0.095 77 
3.10 0.095 84 

Comparison with the experimental value TIexp = 0.0957 readily leads to 
't = 3.0 ~s as the best estimate of the value of the inaccessible dead time 
(here assumed extended). This result agrees with that given in a) above. 

The experimental uncertainty of the value of the dead time, determined by 
means of the correlation method, is essentially due to the limited 
precision of TIexp. Its evaluation will be discussed when the results of 
Part 11 concerning non-extended dead times are available. 
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Appendix 

Derivation of R(t) for a Poisson process 

For a Poisson process with count rate p, the probability of observing 
k events in a time interval t is known to be given by 

e- Pt 
Prob(k) = (pt)k __ , with k=O,l, 

k! 

From this we obtain the probability for an even number of events as 

Prob(k even) = 
e - pt I ( pt) 2 r 

r=O (2r)! 

For the evaluation of this sum let us have recourse to the identity 

2 
I (pt)2r 

r=O (2r)! 

co 

L 
k=O 

(pt)k 
---+ 

k! 

co 

L 
k=O 

(_pt)k 

k! 

(At) 

(A2) 

(A3) 

which is obviously true, since for k even both terms on the right-hand 
side are equal whereas they cancel for k odd. Thus we can now also wr~te 

1 
Prob(k even) = e-pt - (e Pt + e- Pt ) 

2 

This result implies that, still for a Poisson process, 

Prob(k odd) 

For the correlation function R(t) this leads to 

R(t) = 1 - 2 Prob(k odd) = -2pt e 

Since in our applications t is a tim& ~lay, it can also be negative. 
The corresponding general formula is then given by 

R(t) = 

in full agreement with an earlier result [SJ. 

(A4a) 

(A4b) 

(ASa) 

(ASb) 
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