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Abstract 

Using the approach indicated by Feller to determine the 
distribution of the effective time of paralysis produced 
by an extended dead time, we show how the output rate for 
a generalized dead time of the Albert-Nelson type can be 
readily obtained for a Poisson input. 

1. Introduction 

Going back in the scientific literature to the birthplace of a new 
development is always rewarding - and sometimes full of surprises. As(for 
the notion of a generalized dead time, it is usually considered that this 
concept made its first appearance in a paper published by Albert and 
Nelson [1] in 1953. In fact, it may be suspected that similar or 
equivalent ideas have been considered before, but that the novelty has 
not been clearly noted. In a way, series arrangements of two dead times 
of different type can well be taken as a valid generalization - at least 
in retrospect -, and such cases have been treated long before. However, 
these approaches were not made for the purpose of generalizing the 
traditional dead-time types, nor has the link been clearly recognized at 
that time. 

A closer look at [1] is interesting, but ultimately rather disappointing, 
in spite of the length and the mathematical appearance of the paper. 
Thus, more than half of the contents' cfea;ls wi'th confidence intervals for 
the original count rate (with several numerical examples), a subject that 
is now considered to be of quite marginal interest. Hence, the only point 
of more than transitory value seems to be the clear description of a 
model, but its practical application has not been pursued in any detail. 

Since generalizations can usually be made in many ways, it is of interest 
to dispose of criteria permitting one to compare their relative merits. 
Among them much weight is justly given to the mathematical structure 
which should be simple enough to permit an exact evaluation of the 
quantities that are of main practical interest. Some elementary 

* This report is dedicated to Wilfrid B. Mann (NBS) on the occasion of 
his eightieth birthday. 



2 

considerations would show that in our case this requirement leaves the 
Albert-Nelson model as the only serious competitor in the field. However, 
it seems that the authors were essentially led to their proposal by 
intuition. 

Real progress with this model was only achieved some years later by 
Takacs who, in a series of sophisticated papers (often in Hungarian, 
which hardly helps matters) further developed the theory of a generalized 
"counter" (Fig. 1). He was, in particular, the first to obtain the 
Laplace transform for the interval density of the pulses after a 
generalized dead time. From this result the average time interval, 
i.e. the reciprocal of the output rate R, can be readily obtained. 
Unfortunately, Takacs' papers are written in a way that puts high 
mathematical demands on the reader. In view of the basic role that the 
formula for the generalized output rate 

R = 
9p 

( 1) 
e 9p't + 9 - 1 

has played in recent years (and is likely to continue to play), we 
thought that many potential users might be pleased to have available a 
simple derivation of (1). This seems to be possible indeed, namel~ by 
having recourse to an idea described a long time ago by Feller [2J in the 
context of an extended dead time. As we shall see below, this approac~ 
can be readily generalized. 

p 't,9 ~ R 

Fig. 1 - Notation for the count rates used in connection with 
a generalized dead time. 

The traditional way to explain the effect of an extended dead time on a 
pulse train uses the fact that in this case each input event is followed 
by a dead time 'to Since all pulses arriving during a dead time are lost, 
this is eJluivalent to saying that for 'th'e inpo,t process, described by the 
interval density f(t), all events which have a distance of less than 't 
from their predecessor are eliminated. Hence, this concerns the fraction 

't 
IT f f(t) dt • (2) 

o 

If the input is Poissonian, with count rate p and interval density 

f(t) pe-pt , for t > o , (3) 

then 

't 
IT P f e- pt dt 1 - e -p't • 

0 
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The count rate of the "surviving" pulses at the output is therefore 

R = p(l - TI) = P e-P~ (4) 

which is the well-known expression valid for a Poisson input count rate p 
and an extended dead time ~. As (2) is quite general, output rates can 
also be determined for more complicated input processes, provided f(t) is 
known. 

We may note that in contrast to the above situation, where the dead 
times, and as a consequence the losses, can be associated with the input 
events, the case of a non-extended dead time calls for a treatment where 
only the output pulses are followed by a dead time which can produce 
losses. This is an essential difference which seems difficult to bridge 
in the case of a generalized dead time. It is the merit of W. Feller to 
have shown a way out of this problem, although this was not at all the 
purpose of his approach. For an extended dead time, as is well known, the 
period of actual paralysis is not constant, but has a certain random 
distribution that Feller found worth while to determine. 

2. The Feller mechanism 

Let us briefly describe in which way Feller [2] has evaluated the I 

effective time of paralysis. Once an event has been registered and has 
initiated a dead time ~, an extension can be produced by a subsequent 
pulse, provided it arrives within ~, and this process may be repeated. 
For a Poisson input, the conditional probability density for an extension 
by T due to the next event is given by (Fig. 2) 

1 
e- pT h(T) -p for 0 >T > ~ , (5) 

q 

where 

~ 

q f f(T) dT = 1 - e-P~ 

0 -' "It .-~., :'; 

is the probability for a first extension to take place. However, since 
additional extensions may occur subsequently, their total length is given 
by the random sum 

T 

where n is the last extension. All contributions are independent and 
follow (5). 

(6) 
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h(T) 

P/q 

T 

o t 

Fig. 2 - The probability density h(T) causing an extension of a dead time. 

It is practical to use Laplace transforms from now on. We readily find 
that 

co 

h(s) - ~ {h(T)} = f e-sT h(T) dt 
0 

't; 1 P ~ f e-(s+p)T dT = --- [1 - e-(s+p)'t;] ('7) 
q 0 q s+p 

The density hn(T) for the arrival of event number n has the transform 

= = (7' ) 

We now use the fact that the probability for n to be the last pulse 
arriving within the dead time of its predecessor is given by the geometric 
law 

qn (1-q) , for n = 0, 1, 2, ••• , 
:1,: 

where the case n = 0 corresponds to"no'extension. 

The unconditional density for the arrival time T of the last event capable 
of extending the dead time is thus 

H(T) = 

with the transform 

~ 

H(s) p L qn [h(s)]n (8) 
n=O 

where we have put p = 1-q = e-P't;. One can see that hO(T) corres£onds to 

the delta function 6(T) since, according to (7'), its transform hO(s) is 
unity. 
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Substitution of (7) leads to 

00 

{P[l - e-(s+p)'tJ 
H(s) L }n = p 

n=O s + p 

P 
= 

1 -
P [1 - e-(s+p)'tJ 

s+p 

(s+p) e -p't 
= 

S + P e -(s+p)'t 
(9) 

which is identical with Feller's result ~e~. 42 of [2J). It is possible to 
determine the exact probability density L3J corresponding to (9), but this 
result is not needed here. The only quantity relevant for what follows is 
the mean value of the extension T defined in (6), and this can be obtained 
directly from i~s transformed density (9). Indeed, for any density f(x), 

with transform f(s), the ordinary moments 

are obtained by forming the derivative 

In our case, we thus have 

T = 

= 
r df(s) 

(-1) 
ds r 

dH(s) 

ds s=O 

s=O 

~, 

H (0) 

and some elementary manipulations with (9) lead to the relation 

~, 1 .' ~"-'-" ;'; 
H (0) = - (1 + p't - eP't) , • 

p 

(10) 

(11) 

Remembering that the last arrival time T is followed by a dead time of 
length 't, the average total time of paralysis following a pulse at the 
output of an extended dead time is found to be 

'teff = 
~, 

't - H (0) = .: (eP't - 1) • 
P 

The last step, namely the link with the output rate, is now obvious. 

(12) 
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As the effective length of dead time (12) is associated with an output 
pulse, the count-rate balance between input (p) and output (R) events is 
given by 

R p - R P'"eff (13) 

since P is the density of original pulses falling in the (extended) dead 
time and which are therefore lost. Hence, by substitution of (12) we 
readily obtain the expected relation 

R = P 

1 + P'"eff 
(14) 

which is well known to hold for an extended dead time. We may conclude 
from the above reasoning that it is always possible to associate the 
loss-producing dead times with the (surviving) output pulses, where the 
price we have to pay for this generalization consists in replacing the 
nominal value '" by an effective one which will, in general, be longer and 
become a function of the input rate. This particular point has been 
considered in more detail in [5]. 

3. Application to a generalized dead time 

The application of Feller's mechanism to a dead time of the Albert-Neison 
type is now very simple. It is sufficient to remember that for a 
generalized dead time only a fraction a of all the incoming events is 
capable of triggering an extension of the dead time. Since pulses chosen 
at random (with probability a) from a Poisson process are still Poisson 
distributed, but with mean value ap, the contents of section 2 are fully 
applicable if we simply replace P by ap, and this leads to 

a'"eff 
1 
- (e ap ," - 1) • 
ap 

(15) 

For the count-rate balance we only have to keep in mind that the pulses 
suppressed by the dead times are those of the input process, thus with 
count rate p. Therefore we still hav.e ~,-, 

R P - R a'"eff p 

from which it follows that 

R 
p 

1 
1 + P - (e ap," - 1) 

ap 

= 
ap 

which is indeed the correct expression (1) for the output rate of a 
generalized dead time. 

It is easy to verify that this formula for R includes as limiting cases 
(i.e. for a = 0 or 1) the traditional types of dead time. 
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In retrospect, one may even be somewhat surprised to see that Albert and 
Nelson have not themselves made use of the Feller mechanism (with its 
simple outcome) in order to render their model quantitative and thus 
really useful. Since Feller's paper is listed among their references, they 
must have been familiar with its contents, but apparently the close link 
escaped them all the same. 

4. Concluding remarks 

We may first note that the simple derivation of (1), which we call the 
Tak~cs formula, is closely linked to the definition chosen for a 
generalized dead time. It can therefore also be considered as an 
a posteriori justification for the choice made by Albert and Nelson. 

Of more relevance is the fact that the Feller mechanism lends itself to 
other important applications, after suitable modifications, as we hope 
to illustrate soon for some series arrangements of two dead times. 

* * * 

The author takes pleasure in dedicating this report to Dr. W.B. Mann. 
Wilfrid's services rendered to the field of radioactivity are too weil 
known to need commenting upon. At BIPM we gratefully remember him as a 
prominent, although at times difficult, member of Section 11; at its 
meetings lengthy discussions have often been enlivened by his good jokes. 
May his collaborators, and his wife Miriam in the first place, go on 
spoiling him for many years to come. 

APPENDIX 

Transform of the interval distributi:orr-for a ;',generalized dead time 

In view of the important role played by the Laplace transform of the 
modified interval density F(t) in most recent studies on generalized dead 
times, it seems worth while to derive this expression from scratch 
(Fig. A1). This is all the more tempting as, with the expression (9) for 
the dead-time extension available, by far the most difficult part in the 
complete derivation has already been done. 

f(t) .. ,9 i-~.- F(t) 

Fig. A1 - The probability interval densities used in conjunction 
with a generalized dead time. 
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The time interval t between two consecutive output pulses can be readily 
subdivided into three additive contributions (Fig. A2) 

t (Al) 

where 

tl is the extension T of the nominal dead time, which we have studied in 
the main part of this report by means of the Feller mechanism, 

t2 is the constant dead time ~ which follows the last event detected 
within the dea"d time initiated by the registered pulse and 

t3 is the waiting time, after the end of the paralysis, for the arrival of 
the next event, which will be registered. 

"~ 

time 

o t 

t 
Fig. A2 - Schematic decomposition of the time interval t between 

two registered pulses into the three components described in the text. 

Since the three contributions are independent of each other, the 
probability density F(t) of their sum, which is the observed interval t, 
is given by the convolutions 

F(t) eH(t) * o(t-~) * f(t) , (A2) 

where eH(t) is identical with H(t), but with p replaced by 8p, for the 
reason explained before in the context of (15). The Laplace transform of 
the interval density looked for can therefore be written as 

:'i 

F(s) = eH(s) e-s~ f(s) • 

Since for a Poisson input we have f(s) = p/(p+s) and as H(s) is known 
from (9), this leads directly to the final formula 

F(s) 
(s + ep) e-ep~ 

s + ep e -(s+ep) ~ 

p 

p + s 

ep + s 
( ) 

p + s 

[ p e-(eP+s)~ ] 

s + ep e-(eP+s)~ 
(A3) 
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This is the correct expression for the transformed interval density that 
a Poisson process assumes after passage through a generalized dead time of 
the Albert-Nelson type. 

The corresponding original probability density, which turns out to be 
rather complicated, can be found by inverting the transform (A3); this has 
been achieved in [6] but the result is not needed here. We may mention 
that (A3) is also the natural starting point for the evaluation of the 
moments of t beyond first order which are required for a valid 
characterization of the respective counting statistics. 
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