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Abstract 

We derive general formulae for the first coefficients 
which appear when the transmission factor T1 for an 
arrangement of two dead times is expanded in a power 
series. This quantity T1 describes the additional effect 
on the output count rate produced by a first dead time of 
general type preceding an extended second dead time. 

1. Introduction 

The basic evaluation of the transmission factor T1(a,E) in the form of 
a power-series expansion 

T1 (a,E) (1) 

has been performed in [1], assuming that k ~ K for ak' where K is the 
largest integer below ~2/~1' the ratio of the two dead times involved 
in a series arrangement. The quantity x = P~2' where p is the input count 
rate, has to be assumed to be smaller than unity for a meaningful 
development (1). 

As the r~levant experimental situatto«~s eq~valent to the one described 
previously [1], it will not be repeated here.' A clear understanding of 
what follows requires that the reader have a copy of the first part of 
this report at hand, to which we shall often refer. Both parts use the 
same notation and belong together. 

The expressions derived in [1] for the coefficients ak are therefore only 
applicable to those cases where a = ~1/~2 is sufficiently small. In 
particular, this excludes the situation where the first dead time is 
comparable to the second one. In order to fill this gap and render all 
values of a (between 0 and 1) feasible for useful measurements, the 
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previous evaluation of T1(9,E) has to be somewhat modified. The 
generalization takes account of the finite value of K which effectively 
applies to a given experimental situation. This will result in a 
tabulation of the coefficients Kak' for 2 ~ k ~ 4 and K ~ 1, similar to 
the ones listed recently in [2J and [3J for the series arrangements "N,N" 
and "E,E", or in an equivalent presentation. 

2. Outline of the traditional approach 

In the evaluation of T1(9,E), as described in [lJ, we were led to 
determine first a quantity which we called the loss L. It is given in 
(1/13)* as 

L = 
1 J 

I Pj 
9 j=l 

+ 
1-9 
(-) 

9 

J 

I qj , 
j=l 

in which two new quantities p. and q. appear. 
J J 

Their definitions, stated in (1/14) and (1/16) as 

1: 

J A. dt 
J 

and 
1: 

J 
j (x1: 

B. dt , 
J 

show that the upper limit J has to be identified with K (explained in 
the introduction), because Aj (and thus Pj) would vanish for j> K, 
and likewise for Bj' as can be seen from (1/8). 

Therefore, we now write for the loss more explicitly 

1 K 
I Pj 

9 j=l 
+ 

1-9 K 
(-) I 

.' ~>, j=l 
q •• 
:' J 

(2) 

Obviously, it would be possible to evaluate successively LK, for K = 1, 
2, ••• , as this has been done in [lJ for L = L4• Subsequently, these 
expressions could be used in the formula 

(3) 

* The abbreviation (I/n) refers to equation (n) in [lJ. 
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which is equivalent to (1/23). From its series development 

we could finally obtain the coefficients Kak' valid for a series 
arrangement "e,E", in which we are mainly interested. 

(4) 

Whereas in this way it would certainly be possible to determine Kak' at 
least in principle, the practical evaluation would turn out to be very 
cumbersome and therefore seriously subject to computational errors. 
It therefore seems preferable to follow another strategy which is both 
simpler and safer. 

The basic idea is to proceed in reversed order, taking advantage of the 
fact that L4 is already known from [lJ. For the practical execution of 
this approach we first have to derive some recursion formulae. 

3. Some useful recursion formulae 

From the explicit expressions given in (1/18) and (1/20) we note that the 
lowest powers of x appearing in their series expansions are 

for and for (5) 

Hence, if we limit ourselves, as usual, to the fourth order in x, we have 
in fact in (2) 

1 1-e 
L4 = e (PI + P2 + P3 + P4) + (--e--) (q1 + q2 + q3) , 

and likewise (till x 4 ) 

Hence, one can also write 

(6) 

where use has been made of (1/18) for P4. 
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This now allows us to evaluate 3T1(8,E) in a simple way from the known 
result T1(8,E) :: 4T1(8,E), for substitution of (6) in (3) leads to 

r x 
[1 

1 
3T1(8,E) - -e L4 - - (1-40:)4 

P 24 

1 
4T1(8,E) - - (1-40:)4 83 

24 

r 
always up to x4, with - eX taken from (1/24). 

p 

83 x4] 

x4 , (7) 

For the coefficients appearing in the power series (4) it follows from 
(7) that 3a2 = 4a2 and 3a3 = 4a3' thus they are equal to the values 
given in (1/25), whereas 

83 

3a 4 4a 4 - 24 (1 40:)4 

1 
= - [(9 - 118 + 1182 ) 0:4 - 83 (1 - 40:)4] • 

24 
(8) 

These results for K = 3 have been particularly simple to derive, but ~he 
approach can also be applied with advantage to K = 2 and even K = 1, 
as we are going to show. 

Starting from the case K = 3, we have for the loss 

(9) 

By means of (1/18) and (1/20) this leads for the difference (up to order 
x 4) to 

3 I. 1 2 I. I. 

3a8 ;x:"'.),± - (1-8) 8 (1-30:)'" x'" , 
24 ' 

which can be rearranged to 

(10) 
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According to (3) one can write 

2T1(9,E) 
r x = - e (1 - L2 ) 
p 

Hence, with (1/24) and (10) the corrective term in (11) is given 
(up to order x 4) by 

1 
[1 + (I-a) x] -- 92(1-3a)3 {4 - [1-9-3(1-S9)a]x} x3 

24 

~ 92 (1-3a)3 {4 + [3+9-(1+lS9)a]x} x 3 • 
24 

Therefore (11) now leads us to 

This yields for the coefficients 

1 2 (1-3 a )3 2a 3 = 3a3 + - 9 
6 

1 
a3 - 92(1-3 a)3] = - - [2(1-29) 

6 
~I ~,. , ... ,' 

1 2 [ ] 3 = 3a4 + -- 9 3 + 9 - (1+lS9)a (1-3a) 
24 

+ 92 [3+9 - (1+lS9)a] (1-3a)3} , 

where 3a4 has been taken from (8). 

(11) 

(12) 

(13) 

(14) 
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Finally, there remains the case K = 1, which requires the longest 
calculations. We start from 

Use of (1/18) and (1/20) gives for the difference (up to x4) 

1 1 
(l-e) e(1-2a)3 [x3 - - (1-2a+8ea) x4] • 

6 4 

(15) 

By grouping the powers of x and of a this can be brought into the form 

- ~ e(1-2a)2 {12x 2 - 4[1-e - 2(1-4e)a] x 3 

24 

+ [l-e - 4(1-3e+2e2)a + 4(1-59+10e2)a2] x4 • 

Similarly to (11) we can also write 

= 

For the evaluation of the second term in (17) up to x4 we need the 
expansion of (r/p)ex to second order; from (1/24) this is 

r x 
-e 
p 

1 
1 + (l-a) x + - [1 - 2a + (2-e)a2] x 2 • 

2 

Since LCL2 is known from (16), the necessary','multiplication can be 
performed. After arrangement of the terms this yields 

1 = -- e (1-2a)2 {12x 2 + 4 [2+e - (1+8e)a] x 3 
24 

+ [3(1+e) - 4(1+69+2e2)a + 2(4+3e+20e2)a2] x4 • 

(16) 

(17) 

(18) 
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Hence, with the coefficients for the expansion of 2T1(9,E) taken from (13) 
and (14), substitution into (17) yields for the coefficients with K = 1 

1 2 1 [ 2 2J 
= 2a 2 - 24 9(1-2a) 12 = 2" a - 9(1-2 a) , 

1 
= 2a3 - -- 9 (1-2a)2 4 [2+9 - (1+S9)aJ (1-2a)2 

24 

(19) 

1 
= - - {2(1-29)a3 - 92(1-3a)3 + 9 [2+9 - (1+S9)aJ (1-2a)2} (20) 

6 

and finally also 

+ 92 [3+9 - (1+lS9)aJ (1-3a)3 (21) 

- 9 [3(1+9) - 4(1+69+292)a + 2(4+39+2092 )a2 J (1-2a)2}. 

4. Various checks 

Some comparisons with known results may be useful. While those for 9 = 0 
are not very useful, the case 9 = 1 is more informative. This corresponds 
to the arrangement "E,E" and 

- for K = 3: 

for K = 2: 

- for K = 1: 
1 

- - (1-4a+3a2) 
2 

1 
- - (2-12a+21a2-11a3) 

6 

(22) 

(23) 

(24) 

All these results agree with the coefficients given in Table 1 of [lJ. 
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Considering the long chain of reasoning which was used in the previous·· 
section - starting from L = L4 , for which an expression was available from 
[lJ, we obtained successively formulae for L3, L2 and L1 , and from them 
the corresponding expansion coefficients for T1 - it would no doubt be 
useful to have a serious check available for the last results 
(with K = 1). Indeed, it is not difficult to imagine that an error might 
have crept in somewhere and remained undetected. 

Such a control is indeed possible since L1 can also be obtained directly 
by evaluating 

1 
= - [P1 + (1-8) q1 J • 

P 

Substitution of (1/18) and (1/20) gives (up to x 4 ) 

1 1 
(l-a) [x - a8x2 + - a282x 3 - _ a3 83x 4 J 

2 6 

1 1 
- - (1-8) (1-a)2 {x2 - - (1-a+3ae) x3 

2 3 

1 
+ -- [(1-a)2 + 4a(1-a)8 + 6a282J x4} • 

12 

This can equally be written in the form 

= (l-a) {x - ~ [l-a - (1-3a)eJ x2 
2 

1 
+ - [(1-a)2 - (l-a) (1-4a)8 - 3a(1-2a)82J x 3 

6 

(25) 

After some lengthy algebra this can also be arranged by powers of a. The 
result is 

1 
(l-a) x - - [1 - 8 - 2(1-2e)a + (1-38)a2J x 2 

2 

(26) 
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According to (3) we have the relation 

where L1 is now given by (23) while the series expansion for (r/p)ex can 
be taken from (1/24). Again the necessary multiplication is elementary, 
but tedious to perform. We confine ourselves to giving the result which 
can be brought, for example, into the form 

1 
1 

[e - 4ea - (1-4e)a 2] x 2 

2 

1 
- - [2e - 3e(3+e)a + 3e(4+3e)a2 + (2-8e-5e2)a3] x 3 

6 
(27) 

It can be verified by some additional rearrangements that (27) is indeed 
in agreement with the coefficients lak as given in (19) to (21). f 

Obviously, also the checks for the cases e = 0 or 1 are in line with the 
developments which are known for a long time to hold for the corresponding 
series arrangements "N,E" and "E,E" of two traditional dead times. 

5. The general coefficients for the arrangement "e,E" 

We now try to write the expansion coefficients ak in a way which is valid 
for any value of the dead-time ratio a and where the quantity K can be 
dropped. This can be readily achieved if we use the expressions derived in 
section 3 (rather than the ones obtained in section 4 for checking 
purposes).. In addition, it is practf'cd't"'to de~ine the operation ( ••• )+ by 
demanding that 

for z> 0 

z < 0 
(28) 

This is in essence equivalent to the unit-step function which we used 
previously in similar contexts, but (28) has the advantage of notational 
simplicity. With this convention the first coefficients appearing in 
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a series development (1) of T1 (9,E) can now be written quite genera'lly· 
(for any value of a) as 

132 
= - - {2(1-29)a3 + 92(3a-1)+ + 9 [2+9 - (1+89)a] (2a-1)+} 

6 

143 
= -- {(9-119+119 2)a4 - 93 (4a-1)+ - 92 [3+9 - (1+159)a] (3a-1)+ 

24 
2 

- 9 [3(1+9) - 4(1+69+292)a + 2(4+39+2092)a2] (2a-1)+} • 

(29) 

(30) 

(31) 

Use of the convention (28) allows us to drop the index K used in 
section 3. The expressions (29) to (31) clearly generalize the formula 
(1/25) given previously, which can be readily recovered from the new 
expressions by putting a ~ 1/4, as in this case only the first terms in 
(29) to (31) remain whereas all the others vanish by virtue of (28). 

It is instructive to see how the general formulae become progressively 
simpler as a diminishes, reaching their final expression for a ~ l/k. 

f 

The above results - in addition to their intrinsic interest - form an 
important intermediate step in our long-term effort for obtaining 
coefficients which are valid in the most general situation, namely when 
both dead times forming a series arrangement are of the generalized type. 
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