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Abstract 

The effect of two non-extended dead times in series on 
the count rate of an incoming Poisson process is studied 
anew. Compared to an earlier approach to the same 
problem, much simpler results are obtained which can be 
presented in closed form. Some series.· expansions are 
derived for various experimental situations and a proof 
is given ensuring the exact equivalence between the old 
and the new expressions. 

1. Introduction 

For a series arrangement of two dead times, it has become usual to 
describe the overall effect on the count rates by the relation 

R (1) 

where T2 and T1 are so-called transmission factors. They can be defined 
as follows (cf. Fig. 1): if Ro is the output rate R for ~1 = 0, i.e. in 
the absence of a first dead-time element, then 

R 
arid = (2) 

Hence, for a given input process, T2 depends only on '{;2 while T1 accounts 
for the additional influence of ~1' For the sake of simplicity (and in 
agreement with the usual experimental situation) we assume that the input 
process, of rate p, is Poissonian. 

For the two traditional types of dead time, namely non-extended (N) and 
extended (E),~four different combinations are possible for an arrangement 
of two elements in series. Obvious~y, they all lead to different 
expressions for T1 • 

r 
p I---~:'--- R 

Fig. 1 - Schematic arrangement of two dead times in series (with ~1 ( ~2) 
and the corresponding count rates. 
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It turns out [lJ that, for a Poisson input, two of them, namely those 
corresponding to the type sequences "N,E" and "E,N", lead to very simple 
formulae whereas the arrangements in which the two dead times are of the 
same type are more difficult to describe. By far the most complicated 
expression has been obtained for the sequence "N,N"; in hindsight, 
therefore, we find it somewhat astonishing that iG is exactly this case 
that has been first analyzed in a rigorous way [2]. 

We suggest to come back once more to this problem for two reasons. The 
first is that we can now propose a new and simpler formula. The result, 
although equivalent to the previous one, is much easier to use. The 
second reason is due to the fact that certain series developments have 
become of interest recently as they can be compared directly with 
possible generalizations where one or both dead times are of the 
Albert-Nelson type. The new formula allows us to derive the necessary 
power series in a much simpler and more reliable way. 

2. The new evaluation of T1(N,N) 

In contrast 'to the approach suggested by (1), we now determine the 
counting losses in the same order as they occur, i.e. first the effect of 
~1 and then the additional losses due to ~2. The transmission T1 as 
defined above will be obtained in a later step. 

For a Poisson input, the transmission factor for ~1 alone, which we 

denote here by Tl , is given by 

1 
(3) 

so that the original count rate p is reduced to r = p T1 (cf. Fig. 1). 

After the first non-extended dead time the interval density is known to 
be given by 

f(t) for 

which yields for the k-fold density (k ="1, 2, ••• ) 

{f(t)}*k 

~ [p(t-k~l) Jk- 1 

(k-1)! 

-p(t-k~l) 
e .:_ , for 

The cumulative or total arrival density of pulses after ~1' with an event 
at t = 0, is given by the sum 

K 

D(t) I fk(t) , 
k=l 
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where K is defined by K1:1 < 1:2 .. (K+l) 1:1 or, in the notation used 

previously, by K = [[1:2/1: 1 ]] • 

We now have to evaluate the (additional) losses produced by the second 
.dead, time 1:2' Since every registered output event (R) is followed by 1:2' 
each one has to be associated with a loss probability 

1:2 
ilK f D(t) dt 

o 

K 

I 
k=l (k-l)! 

p 

K 

I 
k=l (k-l)! 

1 

o 

According to Dwight [3J we have, for m = 0, 1, 2, 

m! m m! e-a:x I 
j=O (m-j)! 

which in our case leads to 

... , 
m-j x 

K pk k-l { (k-l)! -pe 1:2-k1:1) (k-l) ! 
ilK I I - e 

k=l (k-l) ! pk j=O (k-l-j)! 

or, after simplifying, to 

K 

I 
k=l 

k-l [(l-ka)xJj 
{I - e - ( 1-ka )x I } , 

j=O j I 

where we have put, as usual, P1:2 = x and 

From the count-rate balance 

R = r - R ilK 

(4 ) 

(5 ) 

k-l-j (1:2-k1:1) 
} 

pj+l 

(6) 

we find, put~ng R = r KT2 for the second new transmission factor 

= (7) 

where ilK is given by (6). 
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How can we arrive from this at the requested tansmission factor T11 Since 
the output rate may also be written in the form 

R P Tl • KT 2 ' (8) 

a simple comparison with (1) yields for Tl - KT1(N,N) the relation 

= (9) 

with T1 given by (3) and KT2 by (7). Since obviously 

1 

1 + P't2 

we readily find for the transmission factor the formula 

1 + x 
{l + 

K k~l [x(l-ka)]j ]}-1 • L [1 - e - (1-ka )x L 
j! 

(10) 
1 + ax k=l j=O 

This is the main result of the present study. 

It is not obvious, though nevertheless true, that expression (10) is 
identical with the more complicated one given previously. This point will 
be elaborated in Appendix C and proved in Appendix D. 

4. Some series developments 

For many applications it is useful to have approximations of KT1(N,N) 
available, usually in the form of series expansions. As their actual 
derivation is rather cumbersome, we shall limit ourselves to illustrating 
the procedure and giving a selection of t~e intermediate results. Apart 
from care and patience nothing particular is required for obtaining 
them. 

As, according to (10), T1 depends on the range of a, we have to consider 
the different~values of K individually. There is, however, in the general 
expression 

1 + x 

1 + 
(11) = 
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a common factor which we develop first, namely 

I + x c 
1 + ax 

I + (I-a) x I (-ax)j 
j=O 

a) For K = 1, Le. 1/2 <; a .. 1 , 

it follows from (6) that 

1 - e-(l-a)x 

A development up to fourth order gives 

III 
(I-a) x - - (l-a)2 x 2 + _ (1-a)3 x 3 -,-" - (l-a)4 x4 

2 6 24 

and its inve,rsion, after a number of rearrangements, yields 

= 

(12) 

(13) 

(13') 

Thus, with (12) we finally obtain from (11) for the transmission factor 
(in the case K = 1), up to fourth order, the expansion 

1 I 
1 + - (I-a) (1-3a) x 2 - - (I-a) (2-7a+2a2) x3 

2 3 
I 

+ -- (I-a) (23-105a+117a2-59a3) x4 • 
24 

b) For K = 2, i.e. for 1/3 .. a .. 1/2 , . 

equation (6) leads readily to 

IT2 f 2 - e-(l-a)x - e-(1-2a)x [1 + (1-2a)x] • 

As before, this has to be expanded"': to 

1 1 
(I-a) x - - a (2-3a) x 2 - - (1-9a+2la2-l5a3) x 3 

2 6 
1 

+ __ (2-20a+66a2-92a3+47a4) x4 , 
24 

(14) 

(15) 

(15') 
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and by an inversion we can arrive for (1 + il2 )-1 at the expression 

1 1 
== 1 - (l-a) x + - (2-2a-a2 ) x 2 - - (5+3a-33a 2+27a3 ) x 3 

2 6 

Multiplication by C finally leads to 

~ a2 x 2 + ~ (1-9a+30a2-24a3 ) x 3 

2 6 
1 

(16) 

For larger values of the integer K the calculations to be performed for 
arriving at the transmission factor T1 are very similar to those sketched 
above, although increasingly longer. We give the' 'explicit results up to 
fourth order in Table 1. 

It is interesting to compare the various series expansions of KT1(N,N) 
for increasing values of K. We observe that all the contributions of 

k order x are the same, provided that k < K: they lie below the dashed 
line in Table 1. However, the terms of order k beyond K show no simple 
pattern. This behaviour can be fairly well understood by a closer look at 
the quantities ilK' which we shall take in Appendix A, and their effect on 
T1 (Appendix B). 

5. Evaluation of the forms KTl1(N,N) 

In various applications the quantity needed is the reciprocal of T1 
rather than Tl itself. There is, indeed, no good reason to prefer one or 
the other form. In addition, the series expansions might turn out to be 
somewhat simpler for T11• 

The numerical determination of the reciprocal series (always to fourth 
order) is straightforward and the results are assembled in Table 2. 

For lengthy calculations simple checks are always welcome, even if the 
control is not a complete one. In the case of our series developments, 
this can be easily done by choosing for a the limiting value where two 
adjacent regions (specified by K) join. Thus, for a = 1/2 we find indeed 
that ~ 



K 

1 

2 

3 

) 4 

K 

1 

2 

3 

> 4 
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Table 1 - Series expansions of the transmission factors 

a2 a3 

1 1 
(I-a) (1-3a) (1-a) (2-7a+2a 2 ) 

2 3 

--------
1 

- _ a2 
2 

1 2 
- a 
2 

1 
(1-9 0:+30a2-24(3 ) 

6 

..: a 2 (1 +a) 
2 

1 2 
\ - a (Ha) 

2 

122 
- - a (2+20:+a) 

4 

Table 2 - Series expansions of the reciprocal transmission factors 

b2 

1 
(1-a) (1-3 a) 

2 

1 2 
-a 
2 

1 2 
-a 
2 

1 2 
-a 
2 

1 
- (I-a) (2-7a+2a 2 ) 
3 

1 
- - a2 (l+a) 

2 

.-
1 

- _ a2 (Ha) 
2 
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1 1 61 4 
1T1 2T1 - 1 - _ x 2 + _ x 3 --x 

8 6 384 

and 

T- 1 T- 1 1 1 67 4 
- 1 + _ x 2 - _ x 3 + -- x 1 1 2 1 8 6 384 

Likewise one obtains for a = 1/3 

1 2 2 149 
x4 2T1 3T1 - 1 -x + _ x 3 

18 27 1 944 

-1 T- 1 1 2 3 155 
x4 2Tl 3 1 - 1 + _x2 -x + , 

18 27 1 944 

and for a = 1/4 

1 2 5 41 
x4 3T1 4T1 - 1 - -x + __ x 3 

32 128 1 024 

T- 1 T- 1 
1 5 21 4 

- 1 + _ x 2 - __ x 3 +-- x 3 1 4 1 32 128 512 

Hence all the expressions listed in Tables 1 and 2 pass this test 
successfully. 

6. The limiting transmission factor 

(17a) 

(17b) 

(l7c) 

The formulae listed in Tables 1 and 2 do not go beyond fourth order in x, 
but one might wonder how these developments continue for larger values 
of K, 1. e. for 1:1 « 1:2 • 

A look at the coefficients in Table 1 does not allow us to make a reliable 
prediction for the higher coefficients ak. On the other hand, there might 
be some hope for the coefficients bk appearing in Table 2 for the 
reciprocal series. This conjecture seems worth checking. 

Let us decide on order 6. After rather tedious developments we arrive for 
IT6 at the expansion 

1 
(l-a) ~ - - (2a-3a2 ) x 2 + (a2-2a3) x 3 

2 

This suggests the general formula, valid up to xK, 

for K > 1 • 

(18) 

(19) 
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It follows from (10) that 

1 

with C defined in (12), thus 

00 

11C = 1 + (I-a) I (-x)j 
j=l 

(20) 

(21) 

If (20) is actually evaluated for K = 6, i.e. essentially by multiplying 
(18) with (21), we arrive at 

6Tl 1 (N,N) 
1 

a2 x 2 1 
a 2 (l+a) x 3 

1 
a 2 (l+a+a2 ) x4 - 1 +- +-

2 2 2 

1 
a2 1 

(l+a+a~a3) x 5 + _ a2 (l+a+ci2+a3+a4 ) x 6 (22) 
2 2,' 

This strongly suggests, for an arbitrary value of K, the general relation 
(up to xK) , 

K k 

I I (23) 
k=O j=O 

Of course, the series expansion (22) can now likewise be inverted to yield 
6Tl(N,N). This is easier than one might fear, for the necessary formulae 
given explicitly in [4J may be much simplified since the coefficient of x 
is absent. The result is 

1 

If we have confidence in (23), two more terms can be derived by means 
of [4 ], namely (for K ;> 8) 

1 
a 2 (1 + a - a2 -

5 
a4 1 

x 7 +- 2a3 - _ - _ a 5) 
2 4 4 

(25) 

but even now a' general law for the formation of the coefficients in the 
development still does not become visible. This confirms our earlier 
conjecture that the limiting series expansion is simple only for Ti1(N,N). 
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It will be obvious that all the expressions given in this section for 
K »1 are at most of some theoretical, but of virtually no practical, 
interest. Since K ~ 00 implies a ~ 0, the limiting transmission factor 
T1 (N,N) will inevitably tend towards unity. 

Analogous developments for the three other arrangements of two classical 
dead times in series will be given in a subsequent report. 

APPENDICES 

A. Recursion formula for ilK 

It is obvious from (l0) that the loss probability, denoted by ilK' plays a 
key role in the evaluation of the transmission factor T1(N,N). How does it 
change if we decide to increase K by one unit, i.e. for the range of 
smaller values of a? 

This question calls for the elaboration of a recursion formula. It follows 
from (6) that (for K ~ 2) 

K-l 
~-1 + 1 - e-(l-Ka)x L 

k=O 

[ (l-Ka)x]k 

k! 

By restricting ourselves to terms up to order xK we can write 

ilK - ilK- 1 -

= 

K [ -(l-Ka)x]j 
1 - L 

j=O j! 

1 - {I + [-(l-Ka)x]K 

K 
- [-(l-Ka)x]K { L 

~ (l-Ka)K K 
x 

K! 

k=O 

K-l [ (l-Ka)x]k 
L 

k=O k! 

K-1 (_l)k 
L 

k=O (K-k) ! k! 

(-ll 

(K-k)! k! K! 

as the sum over k in the curly brackets disappears. 

(AI) 

(A2) 

This shows that an increase from K to K+l leaves all the contributions up 
to xK unchanged, and this is clearly also true for T1 " 
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It is even possible to go a step beyond (A2) and to derive a general 
expression which gives the changes for all the powers of x. We limit 
ourselves to sketching the reasoning. The starting point is a slight 
variation of CAI), namely 

ex> 

I - e-CI-Ka)x {e(I-Ka)x - L 
k=K 

-(l-Ka)x e 

ex> 

L 
k=K 

[CI-Ka)x]k 

k! 

[(l-Ka)x]k } 

k! 

Execution of the multiplication leads, after a rearrangement, to 

[CI-Ka)x]K [(I-Ka)x]K+l 
+ {1 - (K+I)} 

K! (K+I)! 

[CI-Ka)x]K+2 
+ --...,-----

CK+2) ! 

1 
{I - (K+2) + - (K+I) (K+2)} 

2 

(A3) 

[ (l-Ka)x]K+3 
{I - (K+3) 

1 I 
+ +- (K+2) (K+3) - - (K+I) (K+2) (K+3)} 

(K+3) ! 2 6 

[ (l-Ka)x]K+4 I I 
+ {I - (K+4) + - (K+3) (K+4) - - (K+2) (K+3) (K+4) 

(K+4) ! 

+ ••• • 

2 6 

1 
+ -- (K+l) (K+2) (K+3) (K+4)} 

24 

An evaluation of the curly brackets appearing in the above expression 
yields, in order, 

- K 

1 
-K (1 + K) , 
2 
I 1 

--K (2 + 3K + K2) , 
6 . 
I 

llK + 6K2 + K3) -K (6 + , 
24 

where we see the Stirling numbers (of first kind) appearing as 

. ~ . 
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coefficients. In retrospect, this is not really a surprise. The general 
recursion formula looked for can thus be written as 

00 

L 
k=O 

where we have to put 

[(l-Ka)xJK+k 

(K+k) ! 

s(k,O) = 

k! 

k 
L IS(k,j)1 Kj , 

j=O 

When (A4) is applied to K = 2, as an example, we find 

. .. , 

(A4) 

(A4') 

which is an agreement with the explicit expressions given in (13') and 
(15'), as can be easily checked. 

B. Updating reciprocal series 

It follows from (10) that the transmission factor KT1(N,N) is proportional 
to (1 + ITK)-l. There thus arises the question of how an increase in K, the 
influence of which on ilK has been studied in Appendix A, affects the 
transmission factor. In other words, we would like to know how a change of 
some coefficients in a series development modifies the corresponding 
reciprocal series. 

Let us start with an expansion 

S 

with known coefficients a j . 

For the reciprocal series 

l/S 

00 

(Bl) 

00 

(B2) 

the new coefficients b j can be obtained by means of known expressions. 

These have been explicitly stated ~n [4J up to order 8; the coefficients 
b j are therefore supposed to be known in what follows. 
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We now assume that S is modified, for instance as the result of "improved 
measurements (or, in our case, a change in K). This can be expressed- by 

CD 

S with (B3) 

where Sc describes the change, with known coefficients c j (up to a certain 
order). 

Hence, in the updated series 

CD 

8 = 1 + L Ajx j 

j=l 
(B4) 

we have Aj a j for j < k 

Aj a j + c j j ) k 

What is the effect of this modification on the updated reciprocal series? 
Let us denote it by 

CD 

1/8 (BS) 

We now wish to know how the new coefficients (B j ) are related to the old 
ones (b j)' Obviously one still has Bj = b j for j < k, but for j ) k the 

connection will be more complicated. For the moment we leave k 
unspecified; it will be easy to put afterwards Cj = 0 for j < k. 

For the derivation of the general relations which link the new with the 
old coefficients, we just have to use some formulae derived previously and 
adapt them to the present context. For the first two coefficients this 
yields (by means of eq. 4 in [4J) 

For the coefficients of higher order the rearrangements are equally 
simple, but become increasingly longer. We restrict ourselves to list the 
final results which may be expressed in the form 



.. ' .. ... 

Bl-b1 

B2-b2 

B3-b3 

B4-b4 = 

etc. 

14 

cl(2a 1+cl) - c2 ' 

- cl[ 3a l(al+cl)-2(a2+c 2)+cr)] + 2c2al - c3 ' 

- cl[6(ala2+alc2-a~cl)-4al(at+ct)+3cl(al+C2)-2(a3+c3)-ciJ 

- c2(3at-2a2-c2) + 2c3al - c4 ' 

cl[12al(ala2+a2cl+alc2+clc2) - lOatcl(al+c l ) 

-6(ala3+alc3+a2c2)-Sal(ar+cr)+4cf(a2+c2) 

-3(a3cl+clc3+a~+c~)+2(a4+c4)-ciJ 

- c2[6ala2-4af+3alcC2(a3+c3)] - c3(3at-2a 2) + 2c4al - Cs ' 

(B6) 

These relations are only of real interest, of course, when few 
coefficients have changed; otherwise it is better to begin from scratch. 
However, if, for instance, the first three values remain unchanged 
(i.e. for k = 4), the formulae simplify to 

and 

while the coefficients of lower order remain unchanged since 
cl = c2 = c3 = O. 

The application of this updating procedure to the evaluation of KTl(N,N), 
when K is augmented, will be obvious and does not call for a numerical 
illustration. 

C. Comparison with the previous approach 

Some twenty years ago, a ~ossible way for evaluating KTl(N,N) was 
described in detail in [2J. The final result, which is also given in the 
review [1], may be written in the form 

') 

K 

L Ak 
k=O 

(Cl) 
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The quant.l ties "'k are complicated functions of x, a and k, namely* 

-sk 
e 

k! 
{[ J 

k ax k+1} 1 + (1+a)x - sk sk + e sk+1 

+ (k+1) (1+ax) [Q(k,sk+1) - Q(k,sk)J • 

In (C2) use has been made of the abbreviations 

Qen, IJ.) 

max {(l-ka)x, a} 

n IJ.j 
\' e -IJ. • 

j:O j! 

and 

This looks discouragingly complicated. Nevertheless, the numerical 
evaluation can be well mastered by a computer program and the main 
results thus obtained are presented in graphical\'form in [lJ. 

(C2) 

(C3) 

Another problem, however, is the comparison of the expressions given 
above with the new formula (la): they seem to have little in common, at 
least at first sight. And yet, there can be no real doubt that they are 
fully equivalent, although it seems difficult to establish the identity 
in a formal way (see, however, Appendix D). 

The complexity of the relations (Cl) to (C3) has made it virtually 
impossible to derive, for example, approximate power-series expansions 
(of the type given in Table 1): as the developments were so long and 
tedious, the possibility that an error affecting the final result remained 
undetected would not be safely excluded. Indeed, independent repetitions 
of the calculations often led to slightly different results, and the 
origin of the discrepancy was sometimes difficult to locate. With the 
availability of the new approach described in the present report, this 
unpleasant situation could be brought to an end**. 

A comparison of (Cl) with (la) easily shows that identity of the two 
computational methods requires that 

* 

(1 + ax) (1 +11<) • 

He may note that the present quantities f...k have been designated 
differently before, namely tk in [1] and ptk in [2]. 

(C4) 

** Another solution to this problem would have been to use one of the new 
computer-algebra systems, but none of them was available to us. Their 
possible introduction at BIPM is at present under discussion. 
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Before giving a general proof of the relation we first want to check its 
validity for some specific values of K. As this is a rather lengthy 
procedure, we shall only indicate briefly the route to follow and then 
limit ou~selves to stating the results of the subsequent steps. 

Let us begin with the case K = 1. 

Since now, with (C3), 

So = x sI = (l-a)x , s2 
and 

Q(O,so) e-x 

Q(O,sl) e-(l-a)x , 

Q(l,sl) e -(l-a)x [1 + (l-a)x] 

Q(l,s2) 1 , 

we find from (C2), after some rearrangements, 

A o 
(l+x) e-(l-a)x and 

0 

Al 2(l+ax) - e-(l-a)x [2 + (l+a)x] , 

thus 
(l+ax) [2 - e-(l-a)x] • 

For K = 2, the quantities So and sI are as before, whereas now 

s2 = (1-2a)x and s3 = 0 . 

Since 

Q(2,s2) 

we find " 

e - ( 1 - a ) x [1 + ( 1-a )x ] , 

e-(1-2a)x [1 + (1-2a)x] , 

1 
e-(1-2a)x [1 + (1-2a)x + - (1-2a)2x2] , 

2 

1 , 

(l+x) e-(l-a)x 

(CS) 

-(l-a)x [ ] - e 2 + (l+a)x + e-(1-2a)x [2 + 2(1-a)x + (1-2a)x 2] , 

11.2 3(1-ax) - e-(1-2a)x [3 + 3(1-a)x + (1-a-2a 2)x2] • 
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and hence for the sum 

3(1+ax) - e-(I-a)x(l+ax) 

- e-(1-2a)x [1 + (l-a)x + a(1-2a)x 2] • 

This procedure may now be continued, e.g. till K = 4, although this 
requires considerable patience. 

After arrangement of the results to 

= 

and 

(l+ax) {3 -(I-a)x e e-(1-2a)x [1 + (1-2a)x]} 

(l+ax) {4 - e-(I-a)x - e-(1-2a)x [1 + (1-2a)x] 

- e-(1-3a)x [1 + (1-3a)x + ~ (1~3a)2x2]} 

A4 (l+ax) {S - e-Cl-a)x - e-(1-2a)x [1 + (1-2a)x] 

1 
- e-(1-3a)x [1 + (1-3a)x + - (1-3a)2x2] 

2 

(C6) 

(C7) 

1 1 
- e-(1-4a)x [1 + (1-4a)x + - (1-4a)2x 2 + - (1-4a)3 x3]} 

2 6 

it becomes evident that all these expressions are in full agreement with 
(C4), since ilK is given by (6). It may be worth mentioning that the last 
surviving errors in (C7) could only be eliminated once the simpler new 
approach was available. There can be little doubt that (C4) also holds 
beyond K = 4. 

These controls clearly show the. practical superiority of the new method. 
Without it, one could certainly not have thought, for instance, of 
deriving limiting relations for K~ 1, as now described in section 6. 

D. Proof of the equivalence 

In view of the detailed results presented in Appendix C it seems more than 
likely that the two approaches available for the evaluation of KT1(N,N) 
are equivaleI\t, but a detailed formal pr'oof of this statement would still 
be welcome. This is what we intend to achieve in this last part of the 
report. 
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Our starting point is obviously (C2) which we now write in the form 

1 -sk k 1 -sk 1 k 1 
-- e [1 + (l+a)x - (l-ka)x] sk + -- e + s + 
k! k! k+1 

- (l+ax) {(k+1) Q(k,sk) - (k+1) Q(k,sk+1)} • 

Our aim is to arrive at a relation which is equal or equivalent to 
(C4) so that we have to sum up the different contributions Ak • 
In view of CC3) it will be useful to single out the two special 
cases sK+1= 0 and Q(K,sK+1) = 1. For this reason we write 

K 

AK = 2: Ak 
k=O 

~ 1 -sk sk + K~l 1 -sk+1 k+1 
L -- e [1 + (k+1)ax] k L -- e sk+1 

k=O k! k=O k! .. 

K 

- (l+ax) { 2: (k+l) Q(k,sk) -
k=O 

K-1 
I (k+l) Q(k,sk+1) + K+l} 

k=O 

-s 
e °(l+ax) + 

K s 1 1 
2: e - k {-- (l+[k+l ]ax) + ---} s~ 

k+l k! (k-1)! 

K 
- (l+ax) { 2: (k+l) Q(k,sk) -

k=O 

K 
I k Q(k-1,sk)} + (l+ax) (K+1) • 

k=l 

The expression in the curly brackets can be transformed to 

{ ... } 
K 

Q(O,so) + 2: (k+1) Q(k'Sk) -
k=l 

K 

I k Q(k-1'Sk) 
k=l 

K K K 
e-X + 2: Q(k'Sk) + [ I k Q(k'Sk) - I k Q(k-1,sk)] , 

k=l k=l k=l 

'j 

(D1) 

(D2) 

(D3) 
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we arrive for AK at 

k 
K sk -s 

(l+ax) (K+1) e-x (l+ax) + I -- e k [Ck+1) + (k+l)ax] 
k=l k! 

K K 
- (l+ax) [e-x + I Q(k,sk) + I 

k=l k=l (k-l)! 

K sk 
k -Sk 

(l+ax) [K+l + I -- e (k+l-k) 
k=l k! 

K sk K 
k -Sk 

(l+ax) [K+l + I -- e - I 
k=l k! k=l 

K k-l s~ -Sk 
(l+ax) [K+l - I I -- e ] 

k=l j=O j! 

By substitution of CC3) this can also be written as 

K k-1 1 
(l+ax) {K+l I I -- [(l-ka) x]j e-(l-ka)x} 

k=l j=O j! 

(l+ax) {I + ~ [1 - e-C1-ka)x kI1 [C1-ka)x]j ]} • 
j! k=l j=O 

(D4) 

(D5) 

Remembering the definition of ilK as given in (6), we are finally led to 

which is just the condition required by (C4). This therefore concludes the 
formal proof that the two approaches for evaluating the transmission 
factor KT1CN,N) are fully equivalent. 

* * * 
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The author cannot help having a certain satisfaction in noting that, with 
the pr'esent: report, he has succeeded in improving on one of his earliest 
contributions to the field of counting statistics - and this without the 
need to correct any errors. After all, this probably just confirms the 
well-known fact that a better approach nearly invariably leads to mbre 
insight, reliability and simplicity. 

The author is grateful to Mme M. Boutillon for a careful reading of the 
present report. 
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