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Abstract 

We describe the combined effect of decay and background 
on the observed count rate of a radioactive source, the 
pulses of which have passed a dead time of the 
generalized type. The fonrulae applicable to the two 
traditional types are recovered as special cases and 
their transition to the situation of negligible decay is 
also indicated. 

1. Introduction 

It is just a quarter of a century ago that the combined effects of decay, 
dead time (of traditional type) and background on the observed count rate 
of a radioactive source have been treated in a definite way. Indeed, the 
paper by Axton and Ryves [1] has left subsequent authors little to add, 
apart from studying higher moments, in particular the variances [2, 3], 
and this situation has hardly changed in the past few years. Likewise, by 
starting from the effect of decay on the Poisson distribution [4J, most 
of the earlier resul ts could be rederived and confirmed. 

Recently the advent of dead times of a generalized type has brought some 
fresh air into the field. It is tempting, therefore, to see whether these 
new developments can be used for arriving at a unified general 
description which includes the two.,tpaditional types of dead times, 
previously treated separately, as special ca~es. This is what we try to 
achieve in the present report. 

* This paper is dedicated to Edward J. Axton on the occasion of his 
forthcoming 65th birthday. Though best known for his outstanding work 
in the field of neutron metrology, Ted has also shown a permanent and 
active interest in measurements of radioactivity. 
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2. The physical situation 

As has been done in [1] we assume that there is a radioactive source 
decaying exponentially with a single decay constant A) 0, to which a 
time-independent background rate Pb is superimposed, hence 

p(t) 

Here the orlgln t = 0 is an arbitrarily chosen reference time. It will 

(1) 

be practical in what follCMs to choose as starting point the beginning of 
a measuring interval of duration T, thus for instance to (Fig. 1). 

P(t) or R(t) 

observed· 
count rate 

R 

true count rate P 

~+T t+T 1 

t 

Fig. 1 - Schematic representation of true and observed count rates as a 
function of time. While p "sHows a s':$.mple exponential decay, 
R includes the dead-time losses. The hatched areas correspond to 
T R (cL eq. (9)). 

If we now assume that the counting losses of an original Poisson process 
are due to a generalized dead time of length 1: and type e, then the 
original input rate p(t) corresponds to an output rate given by [5] 

eR(t) 
e p(t) 

e ep(t) 1: + e - 1 

= 
e N 

e D 
(2 ) 
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3. Towards the general solution 

By the help of the abbreviations 

and (3 ) 

the denominator of (2) can be developed into 

e
8xb [1 + ~ 1 ~ 2 1 ~ 3 1 ~ 4 ] 9 D 9 Xo + - (9 xo) + - (9 xo) + - (9 x o) +. • • + 9 - 1 

2 6 24 

8xb 8xb~ 8xb 1 
(e - 1) + 9[1 + e x + e 9 X'2 

2 

9xb 1 8xb 1 
+ e _92 X'3 + e 93 x4 + ••• ] • 

6 24 

By putting* 

1 + 

we can write 

1 
[1 D 

a 
1 

[1 
a 

1 

9 a 
and 

8x 
a e b 

+ ~ X' + ~~9 X'2 + ~~92 X'3+ ~~93 
2 6 24 

~ ex 1) ] • + -(e -
9 

The corresponding series development 

D 

with ~ 9k- 1 3k = - , 
k! 

1 
- (1 + 
a 

I 
k=l 

",.I ~,. ,-•• , 

x + ..• ~4 ] 

(4) 

(5 ) 

* Some readers might like to have the respective series expansions at hand 
which are 

[1 -
1 1 

± ••• ] a = 1 - xb (1 - 9)xb + (1 - 9 + - 92)x~ and 
2 6 

(4' ) 
1 1 

~ 1 - (1-9)xb [1 - (1 9)Xb + (1 9 +- 92)x 2 + ... ] . 
2 6 b 
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can be inverted to yield 

a (1 + L 
k=l 

where the first new coefficients can be found by means of [6J as 

- a 1 - ~ , 

a 2 - ~2 
1 

a 2 ~e 1 2 

- a 3 + ~3 + 2a1a 2 - a 3 -1 

b 4 = ai - 3a1a 2 + 2a1a 3 + a~ - a4 

371 
~4 ~3 e + _ ~2e2 - _ ~e3 

2 12 24 

1 
~2e - _ ~e2 

6 

Therefore, 

eR(t) 
1 

(po e - A.t + Pb) a [1 - (3X + ~(1 - -e) X'2 + ••• J 
2 

~(X' + X b ) [1 - (3X + ~(~ - 2:. e)x2 - ~(~2 - ~e + 2:.e2)x3 
1: 2 6 

3 7 1 ~ 
+ ~(~3 __ ~2e + _~e2 - -e3)x 4 + ..• ] • 

2 12 24 

We now want to evaluate the mean count rate rJf observed during the 
measuring time T, thus 

1 

T 

T 

f eR(t) dt 
o 

.,~ ~,. , .... \ 

A look at (8) shows that this leads to integ~als of the type 

T T 

f xk dt x~ f e-kA.t dt with k ;.. 1 • 
o o 

(6) 

(7) 

(8) 

(9 ) 

(10) 
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We therefore find (with K = A.T) 

#- = 
axb 

T1: 

3 3 2 7 2 1 3 x6 4 K ] + ~(~ - -~ 9 + -~9 - -9 ) - (l-e- ) + ••• 
2 12 24 4A. 

3 3 2 7 2 1 3 xg S K ] 
+ ~(~ --~ 9+-~9 --9) - (l-e- ) + ••• 

2 12 24 SA. 

[ 
Xo K 1 x~ -2 K ] aPb 1 - ~- (l-e- ) + ~(~ - -9) -(l-e ) + ••• 
K 2 2K 

[
1 K 

+ apo -(l-e- ) 
x 2 1 x o

2 
-3K ] ~ ---2.(1-e- K) + ~(~ - -9) -(l-e ) + ••• • 

2K 2 3K K 

\n th the abbreviation e -K = A we arrive at 

aPb 1 1 
~R = - [K - ~(l-A) x + -~(~ - -9) (1-A2 ) x 2 + ••• ] 
tr- K 0 2 2 0 

By a closer look at the factors appearing in (11) which involve the 
parameter 9 we may realize that they bear a close resemblance to 
expressions we met previously. In particular, it has been found in 
[S] that the output R of a generalized dead time (1:,9) can be written 
(for a Poissonian input rate p) as 

IX> 

R = P [1 + I Bn (_p1:)n] , 
n=l 

1 n 
with Bn - -, I k! S(n,k) (_9)n-k 

n. k=l 

(11) 

(12) 
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where S(n,k) are the Stirling numbers of the second kind, extensively 
listed e.g. in [7J. The first few coefficients in (12) turn out to be 

Bl 1 

1 
B2 1 e 

2 
1 

e2 B3 1 - e +-
6 

3 7 
e2 -

1 3 
B4 1 - e+- - e etc. 

2 12 24 ' 

(13 ) 

A detailed comparison of the terms appearing in the expansions (11) and 
(12) allows uS to arrive at the general form valid for the series 
development of eR 

Cl) I-An n k! 
~ = 

a~ 
[K + I (-) (-x )n I S(n,k) (_e)n-k ~k J 

0 K n=l n k=l n! 

Cl) 1_An+1 n k! apo 
[I-A + I (_e)n-k ~k J +-- ( ) (-x )n I - S(n,k) , 

K n+l 0 I 
n=l k=l n. 

or also 

(14) 

Cl) 

a 
+­

K 
{ I 

1-An+1 I-An n 
( ) + Pb (--) J I k! S(n,k) (_e)n-k ~k} • 

n+l n k=l n=l 

This rather complicated expression is the main outcome of the present 
study. As it is supposed to be a generalization of the results contained 
in [1 J, one should be capable of reco1fe.r,ing them. This will be done in 
sections· 5 and 6. 

In addition, it should be possible, of course, to go back to the case of 
negligible decay during the measuring period. However, simply putting 
K = 0 in (14) would lead to ill-defined expressions. Since the limiting 
process is not entirely trivial, it might be worthwhile to perform it for 
checking purposes. 

4. The transition to A = 0 

A look at (14) shows that the required transition first calls for the 
evaluation of 

1 - An 
lim [ J 
K7{) K 

[_1 1 2 2 lim (nK - - n K ± 
K7{) K 2 

••• ) J n • (15 ) 
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This then leads to 

n 
I kl S(n,k) (_e)n-k~k] 

k=l 
co 

a(xo +xb) [1 + I Cn (_~o)n ] 
n=l 

co 
a(xo+xb) 

{~Po[l + I Cn (_~xo)n]} , 
~Po 

with 

n=l 

1 n 
I kl S(n,k) (_e/~)n-k • 

nl k=l 

(16 ) 

A comparison with (12) reveals that the expression in the curly brackets 
is just the output count rate of a generalized dead time, provided that 
we identify Po with ~Po and e with e/~. Hence, by means of the Tak£cs 
formula [5] we can now write 

a(xo+xb) 
[ ( el ~) ~Po ] 

e 
rjR-r: 

~Po e ( el ~) ~o + el ~ 
a(xo+xb) 

ex 
- 1 ~ e 0 + e - ~ 

Since by virtue of (4) we have 

ex 
~(e 0_1) e exb ex exb e(xo+xb) 

+- e (e 0_1) + e + e - 1 e + e - 1 , 
a a 

one finally arrives at the expected result 

where is the (constant) total input count rate. 
.,.1 ~,. ," •. , ;11 

5. The case of a non-extended dead time 

For e + 0 it follows from (4 ) that 

1 
a = ~ = 

1 + xb 

and also that in (14) the summation over k has only the single 
contribution from k n. Therefore, since S(n,n) = 1, 

co 

apo (l-A) + aq, + ~ { I 
K K n=l 

(17) 

(18 ) 
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or likewise 

oR 
apo 

(l-A) + 
apo aPb 

= aPb + -- A + -- B 
K K 0 K 0 

(X) 

(-f3x )n 
with oA I 0 (1 - An+1) and 

n=l n+1 

(X) 

oB = I 
(- f3x o)n 

(1 - An) . 
n=l n 

The evaluation of these sums first yields 

(X) (X) 

-1 (-f3xo )n] + _1_ [Af3x + - [f3x + I I f3x
o 

0 n f3x 0 

Since In (1+z) 

we arrive at 

A = o 

and likewise 

n=l 

Hence (18) becomes 

n=l 
(X) 

- I 
n=l 

n 

0 n=l 

(_z)n 
for z 2.( 1 , 

n 

(X) 

I 
n=l n 

(-Af3xo )n] 

n 

~Po apo { .,~' ,.~, r'l+f3xo]} aPb [l+~XO] 
- (l-A) + aPb + -- -1+A + -- 1nl:' - -- In ---"'-

K K f3xo 1+ Af3x o K 1+ A~xo 

or also, since 

1 1 1 

(19) 

(20) 

(21 ) 
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When expressed in the original variables this corresponds to 

Pb 
---+ (22) 
1 + xb 

This result agrees with eq. (2) in [1]. 

6. The case of an extended dead time 

For e = 1 we readily see from (4) that 

a = and ~ = 1 • (23 ) 

Hence (14) becomes 

1'R 

ex> 

a [PO (l-A) + ~] + ~ L 
K K n=l 

(-x )n 1-ftl+1 1-An 
o [po ( ) + Ph (--)] 

n! n+1 n 

since the Stirling numbers have the property [7] that 

n 

L k! S(n,k) (_l)n-k 1 . (24 ) 
k=l 

Thus 1"R can also be expressed by 

R = a [PO (l-A) + Pb] 
apo lA + aPb 1B 1 +-- , 

K K K 

ex> 
(-xo)n 1 An+1 -

with lA = L ( ) and (25 ) 
n=l n! n+1 

ex> 
(-xo)n 1 - An 

1B L ( ) 
n=l n! n 

" "',,. , ... , ;Ji 

The evaiuation of the first sum gives 

-1 
ex> 

(-xo)n ] 1 
ex> (-iIx )n 

lA [ L +x +- [ L o + Axo ] 
Xo n=l . n! 0 Xo n=l n! 

1 -x 1 -Ax 
- 1 (e 0_1) + A+- (e 0_1 ) 

Xo Xo 

1 -x -iIx 
A - 1 - (e 0_ e 0) . (26 ) 

Xo 
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The second sum 

00 (-x )n 00 

(-lIxo)n 
1B I 0 I 

n=l n n! n=l n n! 

will remind us of the series expansion of the exponential integral which 
is [7 ] 

- y - In z - I 
n=l n n! 

Therefore 

since A = 

1B - In Xo - E1(xo ) + In (lIxo ) + E1 (lIxo ) 

- K + El (lIxo) - El (xo) , 

-K e • 

We are thus led to 

= 

+ aPb [-K+E
1

(Ax
o

) -E
1

(x
o
)] 

K 

a P -lIx -x 
{-2. (e 0 - e 0) + ~ [El (Axo) - El (xo) ]} 

K Xo 

In the original variables (except for A = e- AT ) this corresponds to 

which is in agreement with eq. (5) in~,[J.,]. ;'; 

It mar be mentioned that several years ag~ - in ~houghtless negle~t of 
ref. L1] - the relevant expressions for oR and 1R have been rederlved 
by starting from a decay-distorted Poisson law. While the formulae 
(expressed as expectation values AE(k) = R to) turned out to be quite 

simple in the case of negligible background [4], they became rather 
involved for ~ F O. Nevertheless, the general results have been 
evaluated for a non-extended [8] as well as for an extended dead 
time [9] and it can be verified that they agree with (22) and (28). 
It must be admitted, however, that the choice of the auxiliary 
quantities in [8] and [9] was not a very lucky one; use of the new 
abbreviations makes the expressions look much simpler, although 
in fact they are completely equivalent. 

(27) 

(28 ) 
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Looking back to the general formula (14) one might think that it is too 
difficult for a practical application when e has an intermediate value. 
However, this is not the case since (14) can be readily programmed and 
numerically evaluated to any order n of terms necessary for the precision 
required. As for the Stirling numbers, their determination is easily 
obtained by means of the recursion for1ll.1la (for n ) 2 and 1 ..; k ..; n) 

S(n,k) k S(n-1,k) + S(n-1,k-1) 

using for the start, for instance, the fact that the limiting values 
are S(n,l) = S(n,n) = 1. 

7. Concluding remarks 

An important practical aspect of the considerations treated above 
has not yet been touched upon, namely the reversion problem. This 
arises in a natural way in that for most problems it is the initial 
count rate P that we wish to know on the basis of the measured o _ 
(average) rate R. This is just the reverse order of what we have done 
till now. 

(29 ) 

The absence of this subject from what has been presented above is not an 
oversight, but is due to our present ignorance. Indeed, the only case, 
where the reversion is well known concerns the arrangement with a 
non-extended dead time (e = 0), and this solu tion has already been given 
in Axton and Ryves' classic paper [1]. The result is (in our present 
notation and wi th some brackets added) 

1 + xb 
{ 

exp [(l-y) (l+xb)K] - exp (K)} 
Po ( ) 

'" 1 - exp [(l-y) (l+xb)K] , 
(30) 

with oR," and 
Pb'" 

y xb 
1 - Pb'" 

where Pb is the observed background rate. 

In the absence of background, (30) can be simplified to 

(31) 

A derivation of (30) is sketched in the Appendix. 

For the general case with 0.( e ..; 1 there are, in principle, always two 
soluti~ns for the original count rate Po which correspond to a measured 
value R, but for the time being no general formulae are known for their 
analytic evaluation. In practice, therefore, numerical methods have to be 
used for their determination by means of iterations. However, in view of 
recent progress with similar reversion problems, in particular by Libert 
[10], there is good reason to hope for a solution of the general case, 
perhaps in the near future. 
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For the frequent case where decay effects are quite small, i.e. 
K = AT« 1, most of the formulae given in this report will not be very 
practical to apply since they become ill-defined for K = O. For tackling 
this situation a series development in terms of K may be more appropriate. 

As an example we consider the situation for a non-extended dead time and 
no background. If we put, as usual, 

then the transmission factor To' expressed in terms of the measured 
quantity y oR~, can be shown to be given by the approximation 

(l-y) [1 
K K2 
- + -(2-y) 
2 12 

A number of similar relations could be obtained, but we do not wish 
to go here into more details. The intrinsic flexibility of mathematical 
descriptions ensures us that an appropriate form can always be found. 

APPENDIX 

Some complements 

Obviously, the detailed calculations to be presented in this appendix 
are not new for the authors of [1], but they may be welcome to those who 
cannot afford to spend the time and effort necessary for evaluating in 
detail the results presented in [1]. After all, most users of formulae 
feel more at ease if they have the possibility to follow step by step 
their derivation instead of accepting. them i;n good faith. 

Let us therefore give a concise derivation of eqs. (2), (5) and (2a) 
in [1], using our present notation. 

a) Non-extended dead time 

For a source decaying in time according to (1), the average count rate 
oR, measured during a time interval T after a non-extended dead time ~, 

is given by 

1 T 
oR = T f (po e- At + Pt,) [1 + (po e- At + Pt,) ~]-l dt • 

o 
(Al) 
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For the new variable z = e-A.t and with the abbreviations Xo Po"t", 

xb = Pb"t" and A = e-A.T we arrive at 

Xo 
1 dz 

dz 

A.Z 

xb 
1 

+ f f 
A."t" A 1 + xoz + xb A."t" Az(l 

The integrals are of the well-known types 

f 
dz 1 

la + bzl - In 
a + bz b 

f 
dz -1 

la 
+ 

-In 
z(a + bz) a z 

Therefore (with a = 1 + xb and b xo) 

1 [1 + xb + Xo ] xb 
oR T -In 

A."t" 1 + xb + Axo A."t"(l +xb ) 

or also, since In A = -A.T, 

xb 
= + In 

dz 

+ xoz + xb) 

and 

bz I . 

t
1 + xb + 

In 
1 + xb + 

1 
oR "t" 

1 + 

[1 + xb + Xo ] 

xb 1 + xb + Mo 
[- -

AT 
xb ] 

A.T(l+xb) 

This gives for the average count rate 

1 1 [1 + xb + Xo ]} oR = -- {Pb + - In 
l+xb A.T"t" 1 + xb + Mo 

in agreement with eq. (2) in [1], for A. > O. 

Xo 

Mo 
A] 

(A2) 

(A3) 

(A4) 

As we haye seen in the general case-, tthe trariJ:lition to negligible decay 
cannot be obtained simply by putting A. = 0 in (A4). The limiting process 
requires the evaluation of (K = KT) 

1 [1 + xb + Xo ]} 
J - lim { - In 

K~ K 1 + xb + Axo 
(AS ) 

x e- K 
1 

Since Mo x - KXo(l K ± ... ) , 
0 0 2 

and by using the general formula 

In (x+a) 
a a 3 

In x + 2 [-- + + ••• ] , 
2x+a 3(2x+a)3 

valid for a 2 < (2x+a) 2 , 
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we see that (with x = l+xb+xo and 

and therefore 

J 

Hence 

1 
[xb + oR 1: 

l+xb 

which can be rearranged to yield the 

b) Extended dead time 

a - -IQ{ ) o 

for K + O. 

Xo 
J 

l+xb+x o 

expected result 

For an extended dead time 1:, the corresponding evaluation of 1R can bf 
done in the following way. We begin with 

1 T 
1R = T J (po e- At + pt,) exp [-( Po e- At + pt,) 1:J dt 

o 

or, with the usual abbreviations, 

-x T 
lIt T Po e b fe-At exp (-x e- At ) dt 

0 
0 

-Xb 
T 

+ ~ J exp (-x e- At ) dt e 
0 

0 " ')1' , .... , ;Ji 

-x -x 
- Po e b I1 + ~ e b I2 

By putting e -At = u and with A = e- AT we obtain 

T -AT 1 e du -x u 

(A6) 

(A7) 

(A8) 

(A9 ) 

I1 J exp (-At x e- At ) dt J z e 0 
1 J -xou - e du 

0 (-AU) AA 0 1 
1 

AXo 

-Ax 
(e 0_ 

-x 
e 0) 



and likewise (with 

I2 

xou v) 

T 
f exp (-x e 

0 
0 

1 Xo e-v 
f -dv 

AAx v 
o 
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-At A 
) dt f 

1 

Since the exponential integral is defined by 

-x u 
e 0 

co e-zt 
= f -- dt 

1 t 

co e- t 

= f-dt 

we can also write 

1 co e-v 
[ f -dv 

A A__ v 
114

0 

co e-v 
f -dv] 

v 
Xo 

Hence, the final result is 

z t 

in agreement with eq. (5) in [1], for A) O. 

du 

(- AU) 

f 

Again the step backwards from (All) to negligible decay requires some 
attention. The first limi ting process, however, is quite elementary. 
Since 

-Ax -x e 0 _ e 0 

1-.1\: 
and + 1 , 

K 

-x 
e 0 [(l-A) 

for K + 0 , 

1 
Xo + - (1-A)2 x 2 + .•• ] 

2 0 
<t" "'r" ,""., 

we have 

1 -Ax. -x 
lim [- (e 0 - eO)] 
K+O K 

For the second part probably we had best use the relation 

dE 1 (z) 

dz 

1 -z 
- - e 

z 

(AlO) 

(All) 

(Al2) 



16 

Since 

we find that (for K + 0 and with a = -KX ) o 

K 

E1(xo+a) - E1(xo) 

a/(-xo) 

Hence, it follows from (All) for A + 0 that 

= 

as expected. 

In the absence of a background contribution (i.e. for xb 
(A4) and (All) can be simplified, yielding then 

1 
- [In (1 + x ) - In (1 + Axo) J 
AT't" 0 

and 

-x 
e 0 (Al3) 

(Al4) 

0) the results 

(AlS) 

f( Al6) 

Note that eq. (Sa) in [lJ, which corresponds to (Al6), has been distorted 
by some obvious misprints. 

c) Original count rate 

Our final supplement concerns eq. (2a) in [lJ which gives, for a 
non-extended dead time, the original count rate Po in terms of the 
measured quantities. An attempt to reconstruct the solution may run as 
follCMs. 

With Y =. oR't" we can write (22) or (A41' ·-a,s ;1; 

xb 1 
{ 

1 + xb + Xo } y = In 
1 + xb K(l + xb) 1 + xb + Axo 

or 

{ 
1 + xb + Xo } [y -

xb 
J In = K (1 + xb) - c . (Al7) 

1 + xb + Axo 1 + xb 
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Therefore 

e C 1 + xb + Xo 

1 + xb + Axo 

Xo (.fleC - 1) (1 + xb) (1 - eC) 

[ 
1 - eC 

J or Xo (1 + xb) (Al8 ) 
C-K e - 1 

With D - K - C we finally arrive at the expression 

eD _ e K 

[ J (Al9 ) 

where, since one can also write 

C 

we have 

D K (1 - y) (1 + xb) • (A20) 

The relation (A19) obviously corresponds to (30) and is identical with 
the expression given in [lJ. 

With the derivation of this result we end our attempt to put some meat 
around the solid, but bare bones originally offered by Axton and Ryves. 
It is to be feared, however, that the meal thus prepared with alien 
ingredients may have somewhat changed its taste. So we cannot bu t hope 
that the original cooks will excuse the possible admixture of new 
flavours. 

.,1 "',1' ," •. \ 

Discussions with Mme M. Boutillon (BIPM) have resulted in a number of 
improvements which have been incorporated in the text. 
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