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Abstract 

In our practical realization of a generalized dead time, 
the type applicable to an arriving pulse depends on a 
periodic signal of frequency v with two states. It is 
shown that the independence of subsequent choices, for 
Poisson arrivals of events, can be guaranteed as long as 
v exceeds the average count rate of the process under 
study. 

1. Introduction 

The notion of the traditional two types of dead times, called 
non-extended and extended, has been generalized in 1953 by Albert and 
Nelson [1]. In their model, one or the other of the usual types is chosen 
at random, but with a certain probability, for each incoming pulse. If we 
denote by e the probability that an extended (E) dead time is chosen, 
i.e. 

e, wit h 0,.; e ,.; 1 , (la) 

then we have obviously for the non-sx~~~I1.ded (N) type 

Pe(N) 1 - e . (lb) 

An important feature of this model is that subsequent choices are assumed 
to be completely independent of each other. 

Originally, the motivation for this generalization clearly came from 
theoretical considerations: it made possible a unified treatment of 
dead-time losses, and the traditional two types had now become limiting 
cases of a more general selection rule describing the "survival" of 
pulses, namely for e = 0 and e = 1. 

* This report is dedicated to Peter J. Campion on the occasion of his 
retirement from the National Physical Laboratory, Teddington. 
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A subsequent inquiry into the properties of a generalized dead time has 
brought to light several features which made it desirable to have such a 
device available for actual experimentation - even if this should only be 
possible in some approximate form. Is there any real hope for a practical 
implementation of the model? 

Among the various questions arising in an attempt to realize a system 
with properties as close as possible to the mathematical model of Albert 
and Nelson, we may mention three that are of obvious relevance, namely 

a) How can we perform a random choice of the types? 
b) How can e be accurately measured, and in which time? 
c) How can we guarantee the independence of subsequent choices? 

As for a) the answer is that we do not try to make a truly random choice, 
not even by the use of pseudo-random numbers, as this would require an 
on-line computer. In fact, our choices are of a very poor nature since 
they are based on a strictly periodic signal. This primitive solution 
calls for some justification, which is in essence the subject of the 
present report. Whereas speed and simplicity of such an approach are 
obvious from the start, the surprisingly close approximation to a 
completely,random behaviour - anticipating the outcome of this study - is 
due to the statistical nature of the pulse arrivals. This will also give 
an answer to c), because the independence of the choices of the dead-time 
type for subsequent pulses can be evaluated exactly (for a given set bf 
parameters). More details concerning the electronic realization made at 
the BIPM as well as on b) will be given in another study [2]. 

In the following we derive an expression which will permit one to judge 
in a quantitative way the degree of approximation to the ideal situation 
(1) that can be achieved in the present simple approach. It is easy 
to see in advance that the assumed independence of consecutive choices 
will only be poorly realized when the count rates become comparable to, 
or even exceed, the frequency of the binary signal. 

2. Evaluation of a conditional probability 

It is clear, first, that the study can be' limited to the case of 
two consecutive pulses to which the whole process can be readily reduced. 
In addition, it is easy to see that the analysis of one out of the four 
possible sequences of types that can be formed with two pulses is 
sufficient, since the others are then given by elementary symmetry 
relations. 

The basic situation is sketched in Fig. 1. A periodic signal h with 
two states (which we may call "0" and "1"), of frequency v = liT, 
determines, by means of appropriate electronic gates, which of the two 
types of dead time will actually be chosen at the moment of a pulse 
arrival. Let "0" correspond to N and "I" to E, for example. We start 
with a random arrival of a pulse (at to) and ask for the next event 
to fall in a period which corresponds to the opposite type, for instance. 
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Since the density for the time interval between subsequent events in a 
Poisson process of count rate p is known to be of exponential form, we 
have, by reasoning in time units of T, the expression 

fez) 
-r(z-z ) 

reo 

where now z = tiT and r = pT. 

for z > Zo ' 

The quantity Zo = to/T corresponds to the arrival of the first pulse. 

h(z) 
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Fig. 1: Schematic representation of the relation between the periodic 
signal h(z), which determines the type of dead time chosen 

Z=.!..· --·--T 

(E or N) at a given moment, and the density fez) for the arrival of the 
next random pulse (see text). 

Let us s'tart with a pulse falling in the region E (at zo) and determine 
the conditional probability that the· next arrival, for which the density 
is given by fez), will fall in a time region N. This is readily seen 
to be given by (hatched region in Fig. 1) 

Since 

j+l 

f fez) dz 
j+8 

1 
f fez) dz + 
8 

'+1 

2 

f fez) dz + 
1+8 

3 
f fez) 

2+8 
dz + •.. . 

J -r(z-z) 
r f e 0 dz 

-r(j+8-zo ) -r(j+1-zo ) 
e - e , 

j+8 

(3 ) 
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we have 

co 

e rzo I [e-r(j+e) - e- r (j+1)] 

j=O 

-re -r 
( - e ] 

1 - e-r 

As the arrival time of the first event is actually unknown, we have 
to average over all possibilities in order to find the unconditional 
probability for a sequence of types E,N. This leads to 

e 1 

e Jpe(NIE, zo) dzo 
o 

1 -re -r e rzo e - e 
J ( r ) e dzo e 1 - e 
0 

1 -re e-r e -
(ere - 1) -( r ) 

re 1 - e 

(4) 

(5 ) 

t 
Let us now establish a useful symmetry. If in (5) we replace e by the new 
variable A = e - 1/2, we can easily find the following form 

= 

1 - e 

= 

1 

1 1 
r(- + A) (- - A) 

[1 + e-r - e-r / 2 (e rA + e-rA) ] 

1 - e-r 
2 2 

1 [1 + e-r - 2 e-r / 2 cosh(rA)] 

1 - e-r 
(6 ) 

Since this expression is symmetrica1 in. A, it!: follows that changing e to 
1 - e leaves (6) invariant. ' 

3. Discussion and conclusion 

Since we consider two types of dead times, there are only two 
possible choices for the second pulse and we thus have obviously the 
relation 

(7a) 
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In addition, as a consequence of the periodicity of the signal h(z) and 
its association with the types, it is easy to see that 

Ob) 

and finally also 

(7c) 

This covers the four possible cases. As they can now all be readily 
compared with the sequence E,N, described explicitly by (5), it will be 
sufficient to proceed with this specific situation in what follows. 

Obviously, one of the most important problems is to know to which degree 
the independence of two subsequent choices of the type of dead time can 
be realized. By a development of (5) up to terms r3 we find, after some 
simple rearrangements, 

1 r 2e2 r3 e3 

(l+re + -- + ---
r~ 2 6 

(1 - e) [1 - ll(e)] 

1 
with ll( e) :: - r2 e(l -e) • 

12 

r 2 e2 r 3 e3 r 2 r 3 
1-r e + -- - -- - (l-r + - - -) 

1) [ 2 6 2 6] 
r2 r3 

1 - (1 - r - - -) 
2 6 

(8 ) 

This explicit form confirms that ll(e) is unaffected by a change of e to 
1-e, which is in line with the result (6). 

By taking advantage of the symmetries described by (7), the situation for 
the four possible sequences of types can be summarized by the explicit 
relations 

Pe(NIN) = 

Pe(NIE) = 

P e(E IN) = 

Pe(EIE) 

1 - e... .ePI( e) ,',' 

(1 - e) [1 - ll( e) ] 

e[l - ll( e) ] 

e + (1 - e) ll( e) 

(9) 
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This can also be written in a somewhat different form by using relative 
differences. We then obtain 

- for changing types: 

Pe(NIE) - PeeN) 

PeeN) 
- 1\( e) , 

(lOa) 

Pe(EIN) - Pe(E) 

P e(E) 
- 1\( e) 

- for unchanged types: 

Pe(NIN) - P e(N) 
= 

P e(E) 
1\( e) , 

(lOb) 

Pe(EIE) - Pe(E) 

P e(N) 
1\( e) • 

The relative deviation of the conditional probability Pe(NIE) from its 
nominal or ideal value PeeN) = 1 - e is thus given by 1\(e), according to 
(lOa), and similarly for the other cases. 

The largest deviation occurs for e = 1/2 where it is given by the simple 
approximate expression 

t\nax = 1\(1/2) r2/48 (11) 

while the limiting values 1\(0) and 1\(1) vanish exactly. 

A numerical check with the exact values deduced from the expression (5) 
reveals that the approximation (8) is excellent for all practical 
purposes (i.e. for pT < 1), and slightly pessimistic for high count 
rates, ~s can be seen from Table 1.., ~,-,'; 

It follows from Table 1 (or likewise e.g. from eq. 10) that for any value 
of e the simulation allows us to choose at random, with specified 
probability, a given dead-time type which is practically independent of 
the previous choice. The slight correlation, expressed qualitatively by 
1\(e), is always less than 0.1 %, provided that we can arrange to have 
pT < 0.2. If a value of 0.5 % may be considered acceptable, the condition 
can be relaxed to pT < 0.5. For the frequency of v = 500 kHz used at 
present, sources with count rates of at least up to p = 100 000 s-1 can 
therefore be safely handled. A higher signal frequency could be employed 
if needed. It should be noted that the simple simulation suggested here 
implies no error in the relative frequencies with which the types are 
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chosen on the average, for, by application of the theorem of total 
probabilities, we still have 

peN) Pe(NIE) Pe(E) + Pe(NIN) PeeN) 

(1 - e) (1 - b.) e + (1 - e + eb.) (1 - e) = 1 - e , 

and likewise 

P(E) Pe(EIN) PeeN) + Pe(EIE) Pe(E) 

e(l - b.) (1 - e) + [e + (1 - e)b.] = e, 

as one would expect. Hence, the only (minor) drawback of the proposed 
simulation lies in the fact that successive choices are not completely 
independent of each other, as is assumed in the model. However, the 
remaining correlation is known (for instance by means of eqs. 9 or 10), 
and in particular it is always possible, as evidenced by (11), to bring 
this defect to a negligibly small value by choosing an appropriate value 
for the frequency v = l/T of the periodic signal which determines the 
type of dead time. 

Table 1: Numerical comparison of the approximate formula (8) with some 
exact values of b.(e), which indicates the relative deviation. of 
our simulated generalized dead time from its ideal behaviour. 

b.( e) 
pT e exact approx. 

0.05 0.25 0.000 039 0.000 039 
0.50 0.000 052 0.000 052 
0.75 0.000 039 0.000 039 

0.1 0.25 0.000 156 0.000 156 
0.50 0.000 208 0.000 208 
0.75 0.000 156 0.000 156 

",.I "!,I' .-". 

0.2 0.25 0.000 624 0.'000 625 
0.50 0.000 832 0.000 833 
0.75 0.000 624 0.000 625 

0.5 0.25 0.003 88 0.003 91 
0.50 0.005 18 0.005 21 
0.75 0.003 88 0.003 91 

1 0.25 0.015 3 0.015 6 
0.50 0.020 3 0.020 8 
0.75 0.015 3 0.015 6 

2 0.25 0.057 3 0.062 5 
0.50 0.075 8 0.083 3 
0.75 0.057 3 0.062 5 
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It will become clear from the results of a subsequent study [2] in which 
the practical measurements of the parameter e (by a method using triple 
pulses) are described, that the precisions we are discussing here are 
quite realistic, as they can be reached in a reasonable measuring time 
(a few minutes). Some recent measurements of generalized dead times [3] 
have permitted us to confirm these expectations and they also show that 
the accuracy thus available is adequate for practical purposes. 

The effect of a perturbation in the Poisson process on our approach 
to produce a generalized dead time will be studied in part 11. 

Guy Ratel, of BIPM, is to be thanked for a careful reading of this 
report. 

Dr. Campion's retirement from NPL, after a distinguished career, 
seems to be a fitting opportunity to thank him for his long and 
successful association with the radioactivity work at BIPM. From 1960 
to 1979 he served as a member of Section 11 of CCEMRI, the last ten years 
of this period as a very efficient chairman. His name will remain 
associated with the 4n~-y coincidence method for many generations of 
metrologists. 
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