Report on a trial comparison

of activity measurements of a solution of ¹⁰⁹Cd

by A. Szörényi

Országos Mérésügyi Hivatal, Budapest, Hungary

Abstract

Activity measurements of a 109Cd solution have been carried out in view of a forthcoming large-scale international comparison. Details on the widely differing methods and detectors used by the six participants are reported. The measured activity-concentration values have a spread of 1.7 % and a standard deviation of the mean of 0.53 %. Some results of the γ -ray-emission rate have also been produced.

1. Introduction

This trial comparison was carried through by the Working Group for advising on future comparisons on behalf of Section II (Mesure des Radionucléides) of the Comité Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI).

As decided during the 1983 meeting of CCEMRI Section II, OMH diluted and bottled the ¹⁰⁹Cd solution supplied by the National Accelerator Centre (NAC, South Africa) for the trial comparison.

The ampoules were dispatched from the OMH on 26 November 1984. Each participant (Table 1) received one flame-sealed NBS-type ampoule containing about 2 g of solution. The exact mass was indicated. In addition, BIPM received one ampoule, containing 3.6 g of the undiluted solution, for the International Reference System (SIR).

Table 1 - List of participants

AECL	Atomic Energy of Canada Limited, Chalk River,	Canada
BCMN	Bureau Central de Me <mark>sures Nucléaires, Euratom,</mark> Geel,	Belgium
LMRI	Laboratoire de Métrologie des Rayonnements	-
	Ionisants, Saclay,	France
NPL	National Physical Laboratory, Teddington,	United Kingdom
OMH	Országos Mérésügyi Hivatal, Budapest,	Hungary
PTB	Physikalisch-Technische Bundesanstalt,	Federal Republic
	Braunschweig	of Germany

The 109 Cd activity concentration was about 1.2 MBq g⁻¹ in an aqueous solution of HCl (0.1 mol per dm³) with 20 µg of CdCl₂ per gram of solution.

Purity checks by OMH disclosed no gamma-ray-emitting impurities at the level of about 10^{-6} of the 109 Cd activity. For the half life it was proposed to use the value (462.6 ± 0.4) d [1].

A reporting form had been set up and was distributed with the ampoules. The dead line for submitting the results to OMH was 28 February 1985. The results arrived at OMH between 4 March and 3 May 1985.

2. Mass of solution contained in the ampoules, activity concentration from ionization-chamber measurements, adsorption tests

The participants were asked to measure the activity concentration by a calibrated ionization chamber and the mass of solution contained in the ampoules as well as to carry out adsorption tests. The results of these measurements can be seen in Table 2.

3. Source preparation

A summary of technical details reported in the forms is presented in Table 3.

Dilutions were made by AECL, BCMN, LMRI and NPL.

- AECL: Dilution was needed for' both the ¹⁰⁹Cd and the ¹⁰⁹Pd solution because of the large difference between the rate of detectable radiations and the differences in detection efficiency for the PC and the Ge(Li) counting.
- NPL: It was necessary to dilute the solution in order to reduce the correction for x-x summing.

4. Activity and gamma-ray emission-rate measurements

A summary of technical details reported in the forms is presented in Tables 4, 5, 6 and 7.

BCMN, LMRI, NPL, OMH and PTB applied 4π proportional detectors for counting the conversion electrons. BCMN, NPL and OMH calculated the activity from the count rate of conversion electrons. Typical spectra are presented on Figure 1. In addition to the measurements of conversion electrons, LMRI and PTB measured also the γ -ray emission rate. AECL used the following method: a solution of $^{109}Pd(+^{109}Ag^m)$ prepared from irradiated palladium was standardized by $4\pi(PC)$ counting. Sources

prepared from the 109Cd solution distributed by OMH were compared as to the 88 keV γ -ray-emission rate with sources from the standardized 109Pd solution. Both 109Pd and 109Cd decay via the 88 keV level of 109Ag^m by γ -ray emission. This comparison was made with both a Ge(Li) detector and a pair of NaI crystals. Despite the poor statistics of the NaI γ counting, the agreement with the Ge(Li) counting was satisfactory.

In addition to the $4\pi(PPC)$ measurement BCMN used also two other methods:

- $4\pi LS$ counting of the rate of conversion electrons,

- $4\pi CsI(T1)$ scintillation counting of the rate of conversion electrons and γ photons.

5. Uncertainties

The combined uncertainties and their components are summarized in Table 8.

6. Final results

The results are presented in Table 8 and Figure 2.

BCMN used three different methods for the activity measurement, but the results were not combined into a single result. The three BCMN results have therefore been taken as three independent values, in the calculation of the mean.

The weighted mean of 8 results is $(1 \ 187.6 \pm 2.4) \ \text{kBq g}^{-1}$, and the unweighted mean $(1 \ 187.9 \pm 6.3) \ \text{kBq g}^{-1}$, at the reference date $(1984-12-15, \ 00 \ \text{h UT})$.

The results of this trial comparison show a total spread of 20 kBq g^{-1} (1.7 %).

The deviation of the lowest value from the mean is -1.2 %, that of the highest value is +0.5 %.

	AECL 1)	BCMN	IMRI .	NPL	OMH	PTB
Ampoule number	699 1	6992	6993	6994	6990, 6998	6995
Mass of solution (g) - indicated by OMH - determined by laboratory	2.0049 1.997 ± 0.020	2.0018	2.0023 -	2.0023 1.999 51	2.0009, 2.0024 1.9969, 1.9984	2.0030 2.0029 ± 0.0002
Activity concentration (kBq g^{-1}) at reference date	1 196 ± 14 2) o 1 201 ± 23 t		12603) o 1179 t	1 186 (1976 cal.) o 1 210 (1979 cal.) o	the chamber was not calibrated	activity too low for IC measurements
Activity remaining in the "empty" ampoule after 2 rinsings with distilled water (Bq)	14 ± 13	-	-	- 400 4)	200 ± 20	5

Table 2 - Mass measurements, ionization-chamber measurements and adsorption tests

 The uncertainty of measurements made with a calibrated ionization chamber includes an allowance for the calibration (≈ 1 %) of the ionization chamber. The large uncertainty in the total mass of solution reflects the fact that the amount of solution remaining in the pycnometer was only estimated.

2) o - original ampoule

t - transfer to another ampoule

3) Geometry conditions different from those used for calibration.

4) Three rinsings with carrier solution.

Table 3 - Source preparation

•	AECL	BCMN	IMRI	NPL	OMH	PTB	
Dilution							
Diluent: µg of CdCl ₂ per g of solution	18	20	10	20 3	-	-	
mol of HCl per dm^3 of solution	0.1	0.1	1	0.1 0.1	-	-	
Number of dilutions	· 2	2	1	2	-	<u> </u>	
Dilution factors	10.100	9.7	73.388.5	72.584	-	-	
· · ·	47.618	102	±0.002 5	57.018			
Source preparation for proportional counting							
Source backing: substrate	VYNS	VYNS	Cellulose	VYNS	VYNS	VYNS	
Metal coating	Au + Pd	Au	Au	Au	Au + Pd	Au + Pd	
Number of films	1 or 2	1	1	1	1	1	
Metal layers: above	0	1	1	1	1	1	
below	1 or 2	1	1	1	1	1	
Total mass (µg cm ⁻²)	15	26	20	50	30 ± 5	55	
Drops dispensed onto metal.	No	Yes	Yes	Yes	Yes	Yes	
Wetting or seeding agent	Catanac SN	Catanac 1)	-	Catanac 2)	Ludox + Teepol	Ludox SM 3)	
Drying	Dry air 50-60°C	Air stream	Air	Air	IR lamp	Air	
Special treatment		-	4), 9)	-		5)	
Range of source mass (mg)	<u>,</u> 6)	10 to 15	19 to 26	30 to 80	8 to 12	9 to 11	
Source preparation for γ and/or x-ray count.							
Substrate	Polyester tape	VYNS	Mylar	_	-	Polyethylene	
	sandwich	Polyimide	(sandwich)				
Ring diameter (outer/inner) (mm)	38/25	64	10			20	
" thickness (mm)	0.5	20 to 50 $\mu g cm^{-2}$	0.04			0.015	
Diameter of active area (mm)	8	4	5			4 to 5	
	$6.3 \text{ mg cm}^{-2} 10)$	8)	-			11)	
		-,				,	

Remarks

1) 7 mg per g of solution⁷. 2) 50 µg per g of solution. 3) 10⁻⁴ on 4 sources. 4) Electro-deposition of resin (2 sources).
5) Electro-deposition (4 sources), electro-sprayed resin (8 sources). 6) ¹⁰⁹Pd: 0.42 to 18.14 mg, ¹⁰⁹Cd: 0.31 to 3.39 mg (drop masses/dilution factor). 7) A spot of about 10 mm diameter was wetted with a droplet of Catanac and removed immediately thereafter. This left a very thin film sufficient to spread the activity droplet. 8) No metal coating; wetting agent: Catanac (7 mg per g); drying in air stream; mass range: 10 to 15 mg. 9) AlCl₃ and drying in NH₃ atmosphere (1 source).
10) Tape thickness. 11) Precipitated in H₂S atmosphere.

Source preparation for liquid-scintillation counting (BCMN): about 15 mg of solution in 12 cm³ of scintillator Aqualuma Plus (Lumac) pre-loaded with 0.5 µg of CdCl₂ per g of solution.

С

Table 4 - Equipments for counting

	AECL	BCMN	IMRI	NPL	CMH	PTB
4π proportional counter						
Wall material	stainless steel	Al	Plexi + Au	steel	Al	Al
Height of each half (mm)	21	40	22	120	20	20
Anode						
– Nature	stainless steel	stainless steel	stainless steel	gold-coated W	stainless steel	gold-coated Mo
- Wire di <i>a</i> meter (mm)	0.013	0.021	0.02	0.05	0.021	0.1
- Wire length (mm)	36	150	160	250	40	40
- Distance from source (mm)	10	20	20	70	10	10
- Voltage applied (kV)	2.4	2.0 to 2.6	3.5	4.6	3.65	7.3
Gas						
- Nature	CH ₄	$Ar + CH_4$	Ar + CH ₄	$Ar + CH_4$	$Ar + CH_4$	$Ar + CH_4$
- Pressure (MPa)	°0.1 ⊰	0.3 to 0.5	1.0	0.5	1.1	1.1 o
Discrimination level (keV)	≈ 0.1	3.5	≈ 40	31.0	37.0	30.0
Scintillation detector	24 - ¹⁶ 4 - 16	LS CsI	NaI	-	-	-
Number of crystals: ordinary	2 NaI	- 2 (sandwich)	1			
well type	None	– None	Yes			
Diameter (mm)	76	32 52.4	125			
Height (mm)	76	15 25.4	100			
Well diameter (mm)	-		14.50			
depth (mm)	-		48.42			
Year of purchase	1976/77	- 1975	1970			
Phototube(s)	75 BO1 (SRC)	RCA 8850, EMI 9658R	?	-	-	
Resolution at 662 keV (FWHM*) (%)	7.2	- 20 (at 60 keV)	?		-	-
Solid angle (sr/4π)	0.7	1 1	0.993	-	-	-

* full width at half maximum

Table 4 (cont'd)

	AECL	BCMN	IMRI	NPL	OMH	PTB
Semiconductor detector						
Nature	Ge(Li)	_	l) Ge(Li) 2) high—purity Ge	_	-	high-purity Ge*
Type (geometry)	coaxial		1) coaxial 2) planar	-	_	planar
Volume or relative efficiency	nominal 10 %		1) 100 cm ³ 2) 2 cm ³	-	-	length 25 mm diameter 22 mm
Energy resolution FWHM (keV)/ref. energy (keV)	1.4/88		1) 1.2/122 2) 0.54/122	-	-	0.38/5.9 0.570/122
Material and thickness of window (mm)	A1, 0.5		1) A1, 0.5 2) Be, 0.06	-	-	Be, 0.2
Dead times (μs) - for PC channel - for γ- and/or X-ray channel	2.018 ±0.015** 2.015 ±0.014 (NaI)	10.0 ± 0.1 10.50± 0.05***(CsI)	cumulative -	15.0 ± 0.2 -	3.026 ± 0.005 -	5.000 ± 0.002 -

* Other detectors: Ge(Li), true coaxial, 5 % efficiency,

Ge(Li), one end open, 11 % efficiency.
 ** Another channel of electronics was set up by AECL to gate off the γ rays in coincidence with ¹⁰⁹Pd β rays in order to inhibit the counting of bremsstrahlung by the γ-ray channel. The dead time of this channel was the same as that for the PC channel.

*** The measurements by 47LS counting were carried out with MCA live time.

					Number of data	
	Counting channel window limits (keV)	Typical count rates (s^{-1})	Background rates (s ⁻¹)	Number of sources measured	points, time per point (s)	Time of the measurements
AECL PC channel NaI channel NaI (anti-coincidence) Ge(Li) for ¹⁰⁹ Pd for ¹⁰⁹ Cd	- 70 to 108 70 to 108 85 to 91	830 to 32 000 4 to 530 4 to 350 0.2 to 580 6.6 to 14	0.4 to 1.4 1 to 3 1 to 3 0.02 to 0.04	$\begin{array}{cccc} 6 & {}^{109}\text{Pd} \\ 6 & {}^{109}\text{Cd} \\ 6 & {}^{109}\text{Pd} \\ \end{array} \\ 6 & \text{tape sources} \\ 6 & \text{"""} \end{array}$	19 600 19 600 19 600 19 600 9 6 000	85-01-15 to 85-02-08
BOMN LS channel, original sol. "dilution CsI channel PPC channel	- - 3.5 integral	12 000 1 200 120 to 1 500 140 to 1 300	1.2 1.2 37 3.4	2 3 4 3	2 2 000 6 20 000 13 15 3 000 to 10 000	85-03-25 to 85-03-30 85-04-01 to 04-20 85-03-28 to 04-17
IMRI PPC channel 4πγ channel	40 integral 50 to 120	300 6 to 26	0.8 2.014	5 7	5 5 000 7 60 000	85-02
NPL PPC channel	31.0 integral	400	12	7	3 per source 4000	85-03-05 to 03-15
OMH PPC channel	37.0 integral	9 600 ″	0.2	28	26 (2 to 3)x200	84-12-10 to 12-21
PTB PPC channel Ge channel	30.0 integral 88	9 000 50 (integral)	0.6 -	10 4	10 1 000 20 000	85-02-06 85-01-28

Table 5 - Counting data for the different methods

Table 6 - Formulae used for calculating the results

$$N_{o}(^{109}Pd) = \frac{N(^{109}Pd + ^{109}Ag^{m})}{EF}$$

where N is corrected for dead time, background, impurities (65 Zn, 111 Ag) and decay, EF = 4π (PC) efficiency for counting 109 Pd + 109 Ag^m = (1.9444 ± 0.0095), T₁(109 Pd) = (13.402 ± 0.006) h.

$$N_{o}(^{109}Cd) = \frac{N_{o}(^{109}Pd) \cdot 88 \text{ keV rate (Cd sources)}}{88 \text{ keV rate (Pd sources)}}$$

where the count rates are corrected for losses and decay.

BCMN

AECL

$$\begin{split} \mathrm{N}_{\mathrm{o}} &= \mathrm{N}_{\mathrm{ce}} \, \mathrm{C}_{\mathrm{ce}} \, \mathrm{C}_{\mathrm{sp}} \, (4 \, \pi \mathrm{LS}) , \\ \mathrm{N}_{\mathrm{o}} &= \mathrm{N}_{\mathrm{ce}+\gamma} \, \mathrm{C}_{\mathrm{sp}} \, (4 \, \pi \mathrm{CsI}) , \\ \mathrm{N}_{\mathrm{o}} &= \mathrm{N}_{\mathrm{ce}} \, \mathrm{C}_{\mathrm{ce}} \, \mathrm{C}_{\mathrm{sp}} \, (4 \, \pi \mathrm{PPC}) , \end{split}$$

where $N_{ce+\gamma}$ and N_{ce} are corrected for background and decay (live-time^f measurements were applied in all cases).

LMRI .

$$N_o = N_{ce} + N_{\gamma}$$
,

where N_{ce} is corrected for background and decay (cumulative dead times were applied), and extrapolated exponentially to 0 keV,

 N_{γ} = result of $4\pi\gamma$ counting.

NPL

 $N_o = N_{ce} C_{ce} C_{sp} C_{sum} C_s$,

where N_{ce} is corrected for dead time, background and decay.

OMH

 $N_o = N_{ce} C_{ce} C_{sp} C_g C_s$.

where ${\tt N}_{\rm ce}$ is corrected for dead time, background and decay.

PTB

 $N_o = N_{ce} + N_{\gamma}$,

where N $_{ce}$ is corrected for dead time, background and decay and N $_{\gamma}$ = result of measurement of γ rate.

Table 7 - Corrections applied for calculating the results

(in parentheses uncertainty in units of the last digit)

	AECL	BCMN	IMRI	NPL	OMH	РГВ
Corrections applied			~			_
$C_{ce} = (1 + \alpha_t)/(\alpha_t + \varepsilon_{\gamma})$		1.0381(5) (LS,PPC) [2]		1.0376 (8)	1.0379 (7)	
$(\alpha_t = 26.4 \pm 0.5)$ [1]		$\varepsilon_{\gamma} = 0.0025$ (25)		$\epsilon_{\gamma} = 0.008 (2)$ at 0.5 MPa	$\epsilon_{\gamma} = 0.00 \% (5)$	
for spectrum extrapolation, C _{sp} below threshold electrons above threshold x rays		1.012 (2) (LS) 1.007 (2) (CsI) 1.001 (1) (PPC)	0.1 to 0.3 %	0.20 % (20)	1.002 (2)	
for source self-absorption (C_{S})	بر			0.15 % (15)	1.0003 (3)	01
for geometry loss (C _g)					1.0016 (5)	
for x-ray summing, above threshold (C _{sum})	12 20 - 20			- 0.01 % (1)		
for Ge(Li) losses (dead time, pile up)	1.0185 (21) (max.					.
for 4πγ counting, linear extrapolation to zero mass - for the spectrum between 38 and 50 keV (pilcarm suppression) [3]			0-95 % (10)			
- and for the spectrum between 0 and 38 keV [3]			1.2 % (4)			

Components due to	AECL	BCMN		IMRI		NPL.	OMH	PTB	
Counting statistics	· 0.19	LS 0.1	CsI 0.1	PPC 0.1	PPC 0.08	4 πγ 0.08	0.06	0.06	0.05
Willing Statistics	0.02	0.1	0.1	0.1	0.017	0.01	0.05	0.01	0.02
Dead time	0.01 (NaI/PC)	0.1	0.1	0.1		-	0.02	0.005	0.02
Resolving time	-	-	-	-	-	-	-	-	
Delay mismatch	-	-	_	- 1		-	-	_	
Pile up	0.01 (NaI)	0.02	0.1	0.1	-	-	0.05	-	-
Background	included in counting statistics	0.02	0.2	0.2	0:004	0.05	0.1	0.01	
Timing	0.05	-	-	- 1	0.003	0.01	0.005	0.005	-
Adsorption	0.01	0.05	-	-	-	-	0.02	0.01	-
Impurities	0.14 (in the ¹⁰⁹ Pd sol.)	-	-	-	· -	-	0.05	2 • 10 ⁻⁴	-
Efficiency for PC counting of 109 _{Pd} + 109 _{Ag} m	0.49	-	-	_	-	-	-	-	_
Source self-absorption	-	-] –	-	-	-	0.15	0.03	-
Uncertainty in C	<u> </u>	0.05	-	0.1	-	-	0.08	0.07	-
Correction for below-threshold	-	0.2	0.2	0.3	0.23	-	0.2	0.2	0.15
electrons and above-threshold x rays Foil absorption	-	-	0.1	-	-	-	_	_	-
Threshold setting	- 19 -	_	_	- 1	-	-	0.05	0.1	
Correction for geometry loss	-	-	-	-	-	-	-	0.05	-
Measurement of γ rate by Ge(Li)	_	_	-	-	-	-	-	— 1	0.06
Half life	-		-	-	0.01	0.01	_	0.001	_
Dilution	-	0.1	-	0.1	0.003	0.003	_	-	-
Extrapolation for $4\pi\gamma$ counting	-		-	-	-	0.41	-	-	-
Efficiency for $4\pi\gamma$ counting	-	-	-	-	-	0.02	-	-	-
Combined uncertainty	0.55	0.29	0.4	0.4	0.25	0.42	0.31	0.25	0.17

Table 8 - Uncertainty components of the final result (in %)

		AECL		BCMN		IMRI	NPL	OMH	PTB
FINAL RESULT Radioactivity concentration at the reference date (1984-12-15, 00 h UT)	on (kBq g ⁻¹)	1 184.5	LS 1 194	CsI 1 193	PPC	1 174	1 190.0	1 189.0	1 189.7
Combined uncertainty	(kBq g ⁻¹)	6.5	3.5	5	4.8	3	3.7	3.0	2.2
γ -ray emission rate at the reference date	(s ⁻¹ g ⁻¹)					43.73 •10 ³ (4 πγ) 43.6 •10 ³ * 43.4 •10 ³ *			43.73•10 ³
Combined uncertainty	(s ⁻¹ g ⁻¹)					0.18 •10 ³ (4 πγ) 0.3 •10 ³ * 0.4 •10 ³ *			0.85•10 ³

* Results by γ -ray spectrometry (Ge(Li) and Ge H \tilde{p}).

Weighted mean of 8 results: (1 187.6 \pm 2.4) kBq g⁻¹, at the reference date (1984-12-15, 00 h UT)

..

Unweighted mean " : (1 187.9 \pm 6.3) kBq g⁻¹, "

Figure 1 - Typical spectra observed with pressurized 4π proportional counters using a 9 to 1 mixture of Ar-CH₄ at a pressure of 0.3 MPa (BCMN, top) and of 0.5 MPa (NPL, bottom).

References

- [1] Table de Radionucléides, CEA-BNM, LMRI, 1982.
- [2] $P_{\gamma} = 1/(1 + \alpha_t) = 0.0368$ (5), in R. Vaninbroukx, "Emission probabilities of selected gamma rays for radionuclides used as detector calibration standards", paper P52, IAEA Advisory Group Meeting, Nuclear Standard Reference Data, Geel, November 1984.
- [3] J.M.R. Hutchinson and S.B. Garfinkel, "Standardization of cadmium-109 sources for γ-ray emission rate", Int. J. Appl. Radiat. Isot. 22, (1971) p. 405-414.

(October 1985)