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Abstract 

A generalized model for a dead time has been proposed 
long ago by Albert and Nelson, which contains the usual 
two types as limiting cases. There exists a simple 
formula for the output count rate, due to Takacs, if the 
input pulses form a Poisson process. In most practical 
applications, however, only the output can be measured 
and one would like to know the corresponding original 
input rate. We indicate two equivalent general formulae 
which allow us to do this analytically. They both involve 
Stirling numbers of the second kind and are genera
lizations of the expressions known to hold for the 
traditional types. 

1. Introduction 

The effect of a dead time on a series of events in time consists in 
retaining from the original sequence a certain subset. Those events which 
are rejected give rise to counting losses. The statistical behaviour of 
a dead time can therefore be specified by a selection rule. 
Traditionally, two different selection rules are discussed which 
correspond to the well-known dead times of the non-extended type and the 
extended type, respectively. 

A long time ago Albert and Nelson [1] proposed a more general 
mathematical model for the selection of events out of a random sequence. 
The complete characterization of such a generalized dead time then 
requires, in addition to the usual time interval ~, a further parameter e 
which corresponds to a probability. The generalization consists in 
supposing that the arrival of an event during the action of a previously 
imposed dead time prolongs the latter (in a way known from the action of 
an extended dead time), but only with probability e, and that the random 
choice between extension or non-extension is made for any arrival 
independently of previous decisions. This mechanism assures that for 

* Dedicated to Albrecht Rytz on the occasion of his sixty-fifth birthday 
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9 = 0 we have the usual non-extended dead time, whereas 9 = 1 corresponds 
to the extended type. Obviously, such a model, chosen essentially for its 
mathematical simplicity, in no way guarantees that the effect produced by 
an experimental dead time follows this scheme exactly, but it certainly 
provides more flexibility in the quantitative description of the 
behaviour of "naturally" occurring dead times. 

Among the various relations which can be derived for such a generalized 
dead time, its effect on the count rate of an original Poisson process 
is clearly of particular interest. As Takacs [2] has been the first 
to indicate such a relation, we shall call the corresponding equation 
Takacs' formula. It says that the count rate r, observed at the output 
of a dead time characterized by the parameters " and 9, is given by 

9p 
(1) r 

e 9p" + 9 - 1 

provided that the sequence of events at the input of the device forms 
a Poisson process with count rate p. No attempt will be made here 
to derive (1); we restrict ourselves to showing that for the limiting 
cases 9 0 and 9 = 1 the well-known traditional formulae are recovered. 

For 9 1 we readily find from (1) 

as expected for an extended (e) dead time. 

The case 9 = 0 requires a power expansion, for instance in the form 

Hm 1 
9p 

11 
rn 

9~O 1 + 9p" + 1. 92p2"2 + ••• + 9 -
2 

lim 1 9p 

.. ,) 1 
p 

= 
9~O 

9(1 + p" + ~ 9p2"2 + 1 + p" 
"I "'t" .-,.\ 

which is indeed the formula valid for a non-extended (n) dead time. 

f 
(2) 

(3) 

It happens, however, that in most practical applications the 
experimentally measured quantity is r and that one would like to know 
(for given parameters " and 9) the corresponding original count rate p, 
as this will normally be the quantity which is of physical interest. 
This raises the problem of inverting (1), in other words of finding 
a mathematical expression which gives p as an explicit function of r 
(for known parameters" and 9)*. 

* If a numerical value of p is all we wish to obtain, then a purely 
numerical solution by some iterative process may be more appropriate; 
any programmable pocket computer will suffice for this. 
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At first sight the problem looks rather hopeless, in particular if 
we realize that (1) is clearly a generalization of (2) and that already 
finding an inversion for (2) was an enterprise [3] which could only be 
brought to a good end by means of some lucky guessing (see also the new 
information contained in Appendix 1). 

2. An attempt at an iterated inversion 

Let us first briefly consider a possible way of inverting (1). With the 
abbreviations r~ = z, p~ = x, ex = x, and 9-1 = ~, we have 

x, 
z = -~--

x, 
e + ~ 

and thus also 

I 

x, = z(ex + ~) • 

A power-series development gives 

hence 

x' = z[l + x, +1.x,2+ ••• +~] 
2 

x 

_ z[l + z(l + x, + ~) + 1. z2(1 + ~)2 + ~] 
2 

z[l + z(l + z[l + ~] + ~) + 1. z2(1 + ~)2 + ~] 
2 

z[l + z + z 29 + z~ + 1. z 292 + ~] 
2 

z[9 + z9 + z2(9 + 1. 92)] 
2 

z9[1 + z + z2(1 +!)] 
2 

"" ".,,. ,-,., 

(4 ) 

This shows that the method of iterated inversion works in principle; 
however, it is too cumbersome for deriving approximations of higher 
order. It is interesting to note in (4) that up to second order in z the 
quantity x is independent of the parameter 9. This behaviour is well 
known from the two traditional types of dead time. 
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3. A more systematic procedure 

The approach used this time is essentially the same as the one applied 
previously in [3], although the detailed elaboration is somewhat more 
cumbersome. By putting p~ = x and r~ = z, the Tak&cs formula (1) can also 
be written as 

z = __ ...::fuc~ __ 

efuc + e - 1 

A graphical representation of (5) is given in Fig. 1 for some values 
of e. 

The solution x we try to find here lies in the domain 0 ( x < ~x' 

(5) 

i.e. in the region on the left-hand side of Fig. 1, before z reaches its 
maximum value (for a given e). The exact position of this limiting value 
~ax can be readily found from (5) by requiring that oz/Ox = O. This 
leads to the equation 

efuc 1 - e 
1 - ex 

the solution x = xmax of which is represented graphically in Fig. 2. 

(6) 

f 

No attempt will be made in this report to obtain the "second" solution 
x' > xmax ' which corresponds to the same output z (for e > 0). As x' 
implies very large counting losses, it will normally be of little 
practical interest. 

It will also be noted in Fig. 1 that curves belonging to different values 
of e never cross each other. This is formally assured by the fact that, 
for ex > 0, the partial derivative oz/oe exists everywhere and does not 
vanish. Hence, for a given value of ~ at a known original count rate p, 
a single measurement of the output rate r (or z) is (in principle) 
sufficient for obtaining the parameter e. . 

After these preliminary remarks let" us'iiow t~ckle the inversion problem. 
A development of the exponential function in (5) gives 

x 
z = --------------------------------------------------- (7) 
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Fig. 1. Graphical representation of the Takacs formula (~. For e > 0 the output count rate z passes through 
a maximum value when the input count rate x is increased. The notation used is x = p. and z = r •• 
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Xmax 
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Fig. 2. Input rate for which the output rate is at a maximum, for a given 
value of 9, with xmax = 'tPmax • 

Inversion of the denominator 

to the reciprocal 

co 

D = 1 + \' a .x j 
j~l J 

l/D 
co 

1 + \' b .x j 
j~l J 

:'j 

can easily be ~erformed by means of the explicit expressions indicated 
recently in [4J**. Since a1 = 1, a2 = 9/2, a3 = 92/6, etc., we find for 
the new coefficients b1 = -1, b2 = 1 - 9/2, b3 = -1 + 9 - 92/6, etc. 

** We are pleased to note that, in the meantime, the general formulae 
given in [4] have been proved to be correct by P. Carre. His simple 
and very elegant method can also be applied to other operations with 
power series. 
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Thus (7) can be expressed in the equivalent form (up to seventh order 
in x) 

z = 
co • 

x(l + jl1 b jxJ) 

x - x 2 + (1 - le)x 3 - (1 - e + le2)x4 
2 6 

+ (1 - le + -2e2 - -1.e3)x5 
2 12 24 

(8) 

- (1 - 2e + 2.e2 - le3 + _1_e4)x6 
4 4 120 

+ (1 - 2.e + 11e2 - le 3 + 2e4 - _1_e5)x7 + 
2 6 4 360 720 

Our next step consists in reverting this series, which means expressing 
x in the form of a power series of z. As the formulae given for this 
purpose in the popular tables of Dwight [5J also just go up to seventh 
order, their application is immediate and leads to 

x = z + z2 + (1 +le)z3 + (1 + le +le2)z4 
226 

+ (1 + 3e + 1e2 + -1.e3)z5 
6 24 

+ (1 + se + 12..e2 + 2.e 3 + _1_e4)z6 
6 8 120 

+ (1 + 12.e + lle2 + 12.e3 + 2e4 + _1_e5)z 7 + 
2 6 4 120 720 

(9) 

We now come to the "artistic" part of this study which consists in 
guessing from the explicit terms available in (9) what the general series 
development might be. This attempt could very well lead to no clear 
result. However, it looks as if luck were once more with us in this 
attempt. Indeed, a careful examinafion"'of the terms appearing in (9) 
reveals a close relation of the coefficients with the 8tirling numbers 
of the second kind - although the reason for this connection is quite 
mysterious for the moment. Thus we note, for instance, that the 
coefficient of z6, i.e. 

1 + 5 e + 12..e2 + 2.e3 + _. _1_e4 
6 8 120 

can be interpreted as 

8(5 5) + 8(5,4)e + 8(5,3)e2 + 8(5,2)e3 + 8(5,1)e4 
, 2! 3! 4! 5! 
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and likewise for the other powers of z. This suggests that the general 
inversion formula for (5) is given by 

00 k S(k,k+1-J·) \' k+1 \' eJ·-1 • x=z+ I., z I., 
k=l j=l j! 

A tabulation of the Stirlin~ numbe~s S(n,k) for n up to 25 (and 
1 ~ k ~ n) can be found in L6J. By means of the convention 

(10) 

S(k,O) = 00 k the inversion may also be written in the more condensed , 
form 

x = 
with (10') 

I S(k-1,k-j) ej - 1 • 

j=l j! 

Obviously the special cases e 
also for checking purposes. 

o and e = 1 are of particular interest, 

The case e = 0 is immediate, as the sum over j in (10) now reduces to the 
single term j = 1 (since 00 = 1). Thus 

00 00 

z + 2 zk+1 S(k,k) = z 2 zk 
k=l k=O 

z (11) 
1 - z 

as expected for a non-extended (n) dead time. 

The case e = 1 (extended dead time) has been dealt with previously [3J 
and it was found that 

I (k+1)k-1 
k=O k! 

k+l z • 

As (10) now gives for the same situa~iQn 

z + ~ zk+1 ~ S(k,k+1-j) 

k --l.,l 1.,1 ., j= J. 

we are led to the identity (for k ~ 1) 

k S(k,k+1-j) 

j~l j! 

or also (for k ~ 0) 

k+1 S(k,k+l-j) 

j~l j! 

(k+l)k-1 

k! 

(k+l)k-1 

k! 

(12) 

(l3a) 

(l3b) 
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remembering that S(k,O) = 00 k. We have not come across such a relation 
in the literature available to us. However, a way has now been found 
to prove its correctness; this will be presented in Appendix 2. 

4. An alternative formula 

Guided by the analogy with the simple form (11) which is valid for a non
extended dead time, one may be tempted to look for an inversion of the 
Takacs formula which is of similar structure. This amounts to another 
inversion of (9), which is of the type 

x 
co k 

z(l + L akz ) 
k=l 

with a1 = 1, a2 = 1 + e/2, a3 1 + 3e/2 + e2/6, etc. 

For the inverted series 

z 
x = ----~co~-----

1 - \' b zk 
k~l k 

(10") 

(14) 

f 
the new coefficients bk can again be obtained by applying the explicit 
formulae given in [4]. After some numerical work we arrive at the 
expressions 

b1 = 1 

b2 =! 
2 

b3 =! (1 + le) , 
2 3 

b4 =! (1 
2 

+ Le + --1.e 2 ) 
6 12' ~,-," :11 

bS =! (1 + 2e + 1.e2 + --1. e3 ) 
2 2 4 60 ' 

b6 =! (1 + lie + 3e2 + .lle3 + _1_e4 ) • 
2 3 90 360 

It is not very difficult to conjecture for the general form of the 
coefficients ~, in which we expect to find again Stirling numbers, 
the expression 

k-1 S(k,k-j) 
1 L ej 

k(k-1) j=l (j-1)! 

for k ) 2, whereas b1 1. 

(15) 

(16) 
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Let us again compare this general result with the expressions known 
to hold for the two traditional types: 

For e = ° we see from (16) that bk = 0, for k ~ 2, so that we arrive 
at (11). 

For the case e 1, already treated in [3], we know that 

z 

1 - ! (k_1)k-1 zk 
k=l k! 

A comparison with (16) therefore leads to the conjectured identity 
(for k ~ 2) 

or also (for k ~ 1) 

k-1 

L 
j=l 

S(k,k-j) 

(j-1)! 

k S(k,k-j) 

j~l (j-1)! 

(k-1)k 

(k-1)! 

(k-1)k 

(k-1) ! 

again since S(k,O) = 0O k' This relation can indeed be shown to be 
correct (see Appendix 2'for a proof). 

(17) 

(18a) 

(18b) 

In summing up our findings, we can thus make the following statements: 

If we assume that an original Poisson process (with count rate p) 
has been distorted by a "generalized" dead time (characterized by the 
parameters ~ and e), and that the count rate measured at the output is r, 
then the initial count rate p can be evaluated by two equivalent 
formulae. With the abbreviations x = p~ and z = r~ we have 

., ,.,1' '-~'" k-1 S(k,k-j) 00 

x = z + z k~l 0: zk with O:k = j~O ej 
k (j+1) ! 

, 

or also (19) 

k-1 S(k,k-j) z 

jl1 
ej x = with ~k 00 , 

1 - z - k~2 ~k zk k(k-1) (j-1)! 
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The traditional types of dead times are included as special cases, 
namely 

- for e 0, i.e. ~ non-extended, with 

1 , ~k = 0 

- for e 1, i.e. ~ extended, with 

(k+1)k-1 
cxk = - -

k! 

(k_1)k-1 

k! 

(20) 

It should be remembered that for e > 0 there are, in fact, two 
possible solutions x for a given value of z (cf. Fig. 1) and that the 
above formulae only lead to the lower one. At present we can see no way 
for obtaining analytically the second solution. 

We shall be pleased to hear that someone has succeeded in finding 
a formal proof of the relations (19). 
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APPENDICES 

",I fJf," ,-•. , 

1. Proof of previous conjectures 

The reversion formulae applicable to the case of an extended dead 
time as given in [3] have essentially been obtained by guessing. Although 
we have never really doubted their reliability, it is gratifying to note 
that, in the meantime, the correctness of the two expressions then 
advanced has been established. They correspond to the formulae given here 
as (12) and (17). 

As far as (12) is concerned, this seems to be a result known for a long 
time by the specialists. So L. Comtet [7], while discussing the inversion 
formula of Lagrange (on page 162), treats this case as a mere example and 
calls it "le plus classique sans doute". Hence, the formula (12) may be 
taken as well established, and it was only our ignorance which has 
created a problem. 
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However, it still remained to prove (17). This has been recently achieved 
by M. Boutillon of our laboratory and she has generously handed over 
to me her notes from which I have extracted what follows. 

The basic idea is to check the compatibility of (12) and (17), i.e. of 

CD (j+1)j-l .] 
z [1 + L zJ 

j=l j! 

and 

z 

CD (j_1)j-1 
zj 1 -

jl1 . , 
J. 

This would be established if we could show that their ratio 
We therefore form 

xe (12) = CD (j+1)j-1 
zj] 

CD (j_1)j-1 
zj] [1 + 

jl1 
[1 - L 

xe(17) 
. , j=l . , 
J. J. 

CD (j+1)j-1 
zj -

CD (j-1)j-1 
zj = 1 + 

jl1 jl1 
- (L ... ) . , . , 

J. J. 

CD 

zk - 1 + kl1 Ck 

We now try to prove that Ck = O. For this we first write 

with 

(k+1 )k-1 

k! 

(k_1)k-1 k-1 (j_1)j-1 (k_j+1)k-j-1 

k! - jl1 j! (k-j)! 

(k+1)k-1 
- - B , 

k! 

1 k 
B - -- L (~) (j_1)j-1 (k_j+1)k-j-1 

k! j=l J 

(AI) 

(A2) 

is unity. 

(L ... ) 

(A3) 

(A4) 

(AS) 

For complicated binomial sums one will invariably have recourse to 
J. Riordan's book [8]. Indeed, we find there, on page 18, Abel sums of 
the type (his eq. 14) 

n 
klo (k) (x+k)k+p (y+n-k)n-k+q • 
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In our case we thus have 

k 
~ (~) (j_1)j-1 (k_j+1)k-j-1 

j~O J 
Ak(-l,l; -1,-1) • 

As Riordan's eq. (20) says that 

An(x,y; -1,-1) = (l + l) (x + Y + n)n-1 , 
x y 

we find for our application that 

Ak (-l,l; -1,-1) = (-1 + 1) kk-1 o • 

This now allows us to write for (A4) 

Ck = (k+~~k-1 - ~! [Ak ( ••• ) - (~) (-1)-1 (k+1)k-1] 

(k+1)k-1 

k! 
- 1- [0 + (k+1)k-1] = 0 , 

k! 

(A6) 

(A7) 

(A8) 

which establishes the equivalence of (A1) and (A2). Since (12) is known 
to be true, the above reasoning proves that (17) is also a valid for~ula. 

2. The transition to an extended dead time 

When we tried to pass from the suggested general formula (10) to the 
special case e = 1, agreement with the result already known to hold for 
an extended dead time could only be established by accepting the identity 
(13), Le. 

k+1 S(k,k+1-j) (k+1 )k-1 

j~l 
In order> to 

0' J ° 

prove this 

.I S(k,j) 

j=O (k+1-j)! 

relation, 

1 

(k+1) ! 

where we have used the identity 

1 

(k+1-j) ! 

, for k ;,. 0 . 
k! 

we" first 
:!j 

write it in 

k 
~ 0, S(k JO) (k+1) 

J
o __ LO Jo , j' 

the equivalent form 

(A9) 

(A10) 
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With the reccurrence relation for binomial coefficients 

(k+1) = (k+2) _ (k+1) 
j j+1 j+1' 

we have also for (A9) 

k k 
1 [Jo __ L

O 
j! S(k,j) (~!i) - Jo __ L

O 
j! S(k,j) (~!i)] . 

(k+1) ! 

By means of the formula (taken from [6], p. 825) 

k n-1 

j~O j! S(k,j) (j~l) = j~O jk , 

we finally obtain 

I S(k, j) 

j=O (k+1-j)! 

which proves (13). 

k+1 k 

= (k~l)! [j~O jk - j~O jk] = 
(k+1)k-1 

k! 

(All) 

(A12) 

(A13) 

A similar problem occurred when we attempted to apply (16) to the 
limiting case e = 1. This time we were led to conjecture the identity 
(18), i.e. 

k S(k,k-j) 

j~l (j-1)! 

(k-1)k 

(k-1)! 
for k :> 1 , 

or the equivalent form 

k-1 S(k,j) 

j~O (k-1-j)! 

(k-1)k 

(k-1)! 

Using relations similar to (A10) and ',All), n,amely 

and 

we find for (A14) 

k-1 S(k, j) 

j~O (k-1-j)! 

1 

(k-1-j)! 

1 k-1 

= ( k) (k-1) 
j+l - j+1 ' 

L j! S(k,j) (k:1) 
(k-1)! j=O J 

k k 

(A14) 

(A15) 

(k:1)! [j~O j! S(k,j) (j~l) - jIo j! S(k,j) (1~i)] . 
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Note that in the last expression the sums over j now also include the 
term with j = k. This is possible as the two new contributions vanish. 

Application of (13) then gives 

k-1 k-2 
1 [I jk - I jk] 

(k-1)! j=O j=O 
1 (k-1)k, 

(k-1)! 

which confirms (A14) and hence also (18). 

It will be obvious that all this does not prove either (10) or (16), 
but it actually leaves little room for real doubt. 
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