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On the influence of two consecutive dead times

Jerg W. Miller

Introduction

It is evident that in general the insertion of a dead time in an electronic
circuit will change the stochastic features of a sequence of transmitted
pulses. In an earlier communication | 7], the deformation of an original
interval -distribution I(t) to the new probability density function f, (1),
caused by a dead time "L'] , has been treated.

However, it often happens that for experimental reasons, dead times
have to be imposed at different points in a circuit: It may be of interest
therefore to know the combined effect of such dead times "in series”
(Fig. 4)*}0n the final interval-density W(t), a function, from which
most of the physically interesting quantities of the process (e.g. count
rates) can be easily obtained.
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Fig. 4: Block diagram and corresponding interval ~densities
(schematically drawn)

*) Since this report is a direct continuation of f7] , we simply proceed ,
with the consecutive enumeration of the formulae, figures, and references.



For the sake of simplicity, let us confine ourselves in the following
discussion to two consecutive non-extended dead times and to the
case of most evident practical interest, i.e. o an original Poisson
distribution

I(t) = U(f)‘f- e'-"Pf ’ A (13)

U being the unit function defined in (3) and fhle‘"source" rate.
In this case (cf. (7) ), the interval ~density after the insertion of fC]
is easily shown to be

f](f) = U(t - {1).f‘e-§(t- Tl) . (14)

As a result of the complete independence of different events in
a renewal process, the density for a k-fold interval is simply given
by the convolution

) = {fl(f)}*k

Applying integral tranforms, e.g., this may be readily shown to
correspond to

j’k
fk(i’) = U(f—krft])”(—k-:m—

k=1

k)T - pl-key) (15)

which is a displaced gamma distribution.

Determination of the interval~distribution

When we calculate the final density W(t) , our procedure is analogous
to that of [ 7] . Therefore, we must first determine the probability
density function for the interval between two registrations, in which
exactly k intermediate pulses (in the original sequence) have been
lost because they arrived during the dead time Ty - Inserting (14) and
(15) into the general formula (3), straightforward manipulation leads to
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where i = Min.{(lﬁz , Max.(t - ‘I‘] ’ k‘fcl)}‘ ‘

since the unit functions cause the integrand to vanish for x < k T
and x > t - T -

We can assume without any loss of generality that  T; € T,
Then, the following relations hold for the different domains of #t:

(‘ 0 for t< M!
k+1 - ‘
V‘V’k(f) = < —fl-(—r e'P(k-H) L].{f—(k-}-])i}j]}k. e pt "M et <T1+
k+1
S Sk T e ok ot ’ .
L kT A L.2-k "C]) . e P >T+ T,

with M' = Max. {"CZ , (k+1) ‘“C] }

Fig. 5 is a graphical representation analogous to Fig. 1 and 2. It shows
immediately that for T;3% T, the “truncated” density fy (t) always
coincides with the original fj(t). In this case, therefore, fhe second
dead time "Ez has no influence whatsoever.
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Since there is a minimum distance Ty > 0 between the pulses with
the interval-density f; (1) , it-is evident that there exists an upper
limit K -for the number k of possible events which may happen
during the second dead time To. If a bracket like [x] is used to
signify the largest integer below x , then this limit is simply given by

K = [Tz/rr]] o | (18)

and according to (4), the observable interval-density after both dead -
times is determined by the sum

K .
W = > w6, (19)
k=0 o ‘
which is in general finite (except for ‘C.‘ = 0).

For purposes of control, the interval-densities for the two special cases

where Ty = T, and . T; =0 may be conveniently checked. For

convenience, we write T for ’Cz .

1) For ‘T] = TZ , the summation in (19) reduces to onc term,
since K = 1]=0. In this case, (17) leads easily to

4

W (1) = W_ (1) = U(t=-0)-p- o~ -T)

from which we conclude that the effect of two consecutive dead times
of equal duration is identical to that of one alone.



2) For ‘T] =0 , it follows from (17) that

ok
W () = UGt ) ST o5t

As in (7), this then leads directly to

W) =Ut-1)p e 8,

Although it is possible to measure directly the frequency distribution
of the intervals [6] and fo check by this means W(t) or even_Wk(t),
it is evidently much simpler to determine the corresponding count rate.
This quantity is of great practical importance and therefore currently
measured with high precision. Several fields, such as absolute activity
measurements, also call for the utmost in accuracy. However, since
we have just realized that the interval-densities W) (t) depend,

in general, on both dead times, it is clearly of interest to know how,
when taken together, they will affect the experimental count rate R.

This quantity, in turn, is given by the average time interval T between
successive pulses, i.e.

R=1/7. (29)
Therefore, our next problem is to calculate

< X K
t =§ Zf~\f/k(t) dt = > t s : ‘ (21)
o k=0 k=0

where tk is an abbreviation for

o

h = 6{ thk(t) dt

which may be interpreted as the average interval between two output-
pulses, when k intermediate events in the original sequence have
 been eliminated by the first dead time Ty«



By means of (17), this yields

+
=§k1

T

After a number of simple, but somewhat lengthy rearrangements,
this can also be written as
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where T|< = Max. { T’Z - k'tl, 0}
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and P(n,A) = - "'—T,——
j=n

is the cumulative Poisson distribution, the numerical values of which
are well tabulated in [8} .

Special cases

Before treating the general case and displaying some rather surprising
results of the numerical calculations based on (21) and (22) - a task
which has to be deferred to another report = we may first evaluate
the average interval T for two limiting cases, where the results are
considerably simpler and where they can be readily checked. Again,
T means ‘Tz.



1) Let T]= T, -

. Therefore, we have K =0 and there remain only the terms
T°=‘T and T] =0,

Since P(1, f’C) =] - e'-fc and P(1,0) =0, we immediately obtain
as expected

K ]
t o= 2>t =t =—+T ,
k:ok ° g

2) Let T] =0 .

In this case, we have K =<0 and T; = T holds for any k.

Since now the differences P(k+1, ka) - P(k+1, kaH) 'aH‘vcmish,
there only remains

k k k
_ ¥ -fT < k+1y _ 1 -FT (pT)
he = e -(—-—y + T ) (.? +T)e 7. i
Thus, we get
o0
: T ST k
¥ o= ¥ _—..(_].+r{;) e-fké.. if.'_c__=l+¢t‘ ,
= k k k! £
=0

which is the well-known result for the average interval between pulses
after they have passed a single non-extended dead time.
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