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On the interval=distribution for recurrenr events with a non-extended
dead time

Jorg W, Muller

General case

We consider the arrival of impulses at a counter and assume that this
sequence of events forms a recurrent (or renewal) process ['I,TZJ' .

In this case the time diffziences betweer subsequent pulses are
equidisiributed and independent random variables. Therefore the
stochastic behaviour of this piocess is fully described by the density
function of the intervals t = ;?H‘l - ?i}- ; which we may denote by f.l (t).
Let us suppose now that by a ron-paralyzable counter or by a circuit
specifically designed for: this purpose a “ixed resolving (or dead) time ¢
is inserted in this scquence. As a result, an event is registered if,

and only if, no other registration has taken place during the preceding
time interval of lengthT. Any impulse arriving during the dead time
is ncglected and has no influcnce whatsoever.

Ve want now to determine the interval-distribution for such a sequence.
The result will show thar in general (perhaps contrary to what might

be expected) the dead time does not simply produce a cut-off or a shif

of the original interval~distribution, but may change its shape completely.

To determine this distiibution we start with a reyistered pulse at t, = 0
(cf. Fig. 1) and seek the probability of getting the next (registered)
cvent ar g time t. Since we cannot know how many impulses have

arrived during the dead time T, we shall have to swm all possibilities.

In the case when t. was the last event within T , the first pulse to be
counted will be tj 47 (Fig. 1). The total time t between the two
subsequent registrations may thus be subdivided into two independent
intervals, namely -
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Therefore, the corresponding probcblllty density is easily determmed
formally by means of the convolution

W () = f () f',(ﬂ Pt >T
where f'k(f) = f{f, (f)} xk for t ¢ T
L
0 ‘ ] f > (C
and f‘](t) = { 0 for t< ¢ - rk
f](f) LI 3 T -t

“are two "truncated" density functions for the events k and 1,
respectively (Fig. 2).
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‘In order to see how the convolution (2) can be practically evaluated,

we write it in the more conventional way as
o

e g PO F (=) dx
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W, () |

T
= U(f-'f)'{f x)'f](f-k) dx , | (3)

!
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where U(y) =% 1 fory> 0
LO uy<o

is the unit step function.

Thus, the function f can be replaced by f| if we stop with the
integration in (3) at the end of the dead time, whercas the truncation
of fy has no influence whatsoever, since for t >« the values of fy

for arguments below 1 = x arc never used for the integration (3).

This can also be seen from Fig. 3 which gives a graphical representation
of the convolution (2) in such a way that the corresponding values of
the functions fi and f'y which have to be multiplied are vertically onc
above the other.
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It is now casy to get the total density by summing all possible ‘
combinations. Therefore, the general formula for the interval=-
distribution as modified by a non-extended dead time ‘is

. e __\i\__’ < .
W = U=t 2 W 0 = UG -q) .{f]m e 2 {66000 dxb, (@)
k=0 k=1 %

. - . = Jel wk
since fo(x) 5 (x) and with fk = {f,‘,;‘[
It may be noted that as a result of the definition (2) no Special

normalization is needed in (4) when the conditional probabilities Wk
~ arc added. ' '

Applications

1) As a simple but particularly important example we first determine
the interval-=distribution for a Poisson process with density o .

Since here, as is well known (cf. e.g. fZ} ), the distribution for

a k=fold interval is of the form : '

' k~1
(P) (v - 2(91) L TRt

we get easily from (3)

] | kbl T etk
Wk(l) (1) = U(f""f)v'(k__])-1 e 37 ( ><1< } dx = U(t=1): L-(-;-:,‘-L - e .'Y)f. (6)
)

Therefore, for a Poisson process, (4) gives the well=known result

< o )k - (b v
wP) (1) = U(r-m).e’f".y.L "("ETL - .o 5 (1=77) -
‘ k=0 .
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i.c. the exponential shape of the density distribution is not changed,
but the whole curve is shifted by the amount T to the right. It should
‘be noted, -however, that this simple behaviour is only true for a pure
Poisson process, as can casily be shown.

2) Another example which does not lead to very involved numerical
computation is given by the interval=distribution at the output
of an clectronic scaler where a dead time of the non-extended type
has been inserted. Besides, in this case the results can casily be

checked experimentally by a direct simulation of the process.

It can readily be shown that for a Poisson process as an input, the
intervals at the output of a scaler are distributed according to a gamma
" function. Therefore, the density of the event k after a scaling factor
s is given by

' \ *1 ol ks=1 - ot :

This leads directly to

1

Eex)T - ot

okt 1)s . xks-—l
ks =) - s~-1)1 _ ~¢ "' =«

(s) (s) _ &
st (x)-F]S (t=x) =

ieCo
-
r
f‘

wk“) (0 = Ult=7) - jfk(s) (x)-f](s) (t=x) dx
J |

C(k+)s -t '
_ ~ . (o1) e Y,
= U= ey B e ) o )

‘P
where B (a, b) = ()'Gm]-('l-)/)b"1 dy
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is the incomplete beta function. There exists an extensive tabulation [3]
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for the ratios

IP(O, b) = BP(G’ b)/B(GI b) 7

a=1) ! (b=1) !
(a+b=1)1

where B(a, b) = (

is the usual complete beta function.

On the other hand, we may also take advantage of a relation which exists
between the incomplefe beta function and the binomial expansion

( [4:[ /P. 263), i.c.

n . o,
Bp(a, n-a+l) = B{a, n—c+1)-Z(?)p,°(]-p)n-! . - (10)

[=a

This permits a convenicent use of the tables giving the cumulative |
binomial probabilitics (c.g. [ 5} ), which may be casier to find.
With such a table at hand giving the values for

i::

n_, . _ : |
Ao, o) =>’(’}) ol (1-p)" 71, (1)

O

we can conveniently evaluate numerically the distribution of the
intervals in a Poisson process of density 2 , which is scaled down
by a factor s and where a dead time of Tength & has been inserted, as

w ') (1) = Uf=r) > wk“) ()
k=0
] = k N
_ e (pt)T et S (e o
= ‘1(?-(;'5_'_—1-5—,— e ¥ {] +{_=*'" W‘B(O’ b)'Ap(n', O)J
for t > | (1.2)
with p = €/t and
n = a+ b -1



In the limit p =1, i.c. immediately 'cffer the end of the dead
time, - (12) may be much simplified, since Al(n, a) = 1.

Numerical ‘calculations (for s = 8 and different values of p) have
shown that an expansion of (12) up to k=2 is usually quite sufficient,
the remaining terms being negligibl e. These calculated curves show
excellent agreement with the distributions obtained experimentally

by means of an automatic clectronic interval displayer [6] .
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