B I P M F-92310 SE√RES

<u>Activity measurements of a solution of ¹³⁷Cs</u> An international comparison on efficiency tracing by ¹³⁴Cs

A. Rytz

1. Introduction

At its 1977 meeting, Section II of Comité Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI) decided that the object of the next full scale comparison to be organized by the Bureau International des Poids et Mesures (BIPM) should be ¹³⁴Cs. Simultaneous measurements of ¹³⁷Cs, using the former as efficiency tracer, were also proposed. Other tracers (⁸²Br, ⁶⁰Co, ...) could be considered as well. As it was felt that unexpected difficulties might arise, only a restricted number of participants should be involved in these tracer measurements. Eventually the results would help to decide whether or not a full scale comparison should be considered later.

Although the method of efficiency tracing has been described by several authors [1, 2, 3], no detailed recipe was available which could have served as a guide for setting up a useful reporting form. However, the fact that several participants used instead the same form as for the ¹³⁴Cs comparison showed that an incomplete form would have been better than none at all.

There were some doubts about the expediency of activity measurements, rather than γ -emission rate, in the case of ¹³⁷Cs, where the results depend on several nuclear parameters. However, as these are now sufficiently well known and affect each result equally, expressing the results in terms of activity seemed adequate. The participating laboratories and the names of the persons involved are listed in Table 1. Fig. 1 shows the decay schemes of the two cesium isotopes considered. The decay data were taken from the literature [4, 5, 6].

March 1980

Ì

List of participants

•		Names of the persons who carried out the measurements
AECL	Atomic Energy of Canada Limited Chalk River, Canada	J.S. Merritt A.R. Rutledge L.V. Smith
AIEA	Agence Internationale de l'Energie Atomique Vienna, Austria	H. Houtermans
BCMN	Bureau Central de Mesures Nucléaires Euratom, Geel, Belgique	A. Nylandsted Larsen E. Celen R. Vaninbroukx G. Grosse W. Zehner
BIPM	Bureau International des Poids et Mesures Sèvres, France	C. Veyradier C. Colas J.W. Müller P. Bréonce
LMRI	Laboratoire de Métrologie des Rayonnements Ionisants, Saclay, France	J. Bouchard R. Vatin
NBS	National Bureau of Standards Washington, D.C., USA	A.T. Hirshfeld D.D. Hoppes
NPL .	National Physical Laboratory Teddington, United Kingdom	S. Brown D. Smith M.J. Woods
NRC	National Research Council of Canada Ottawa, Canada	K. Munzenmayer G.C. Bowes A.P. Baerg
ОМН	Országos Mérésügyi Hivatal Budapest, Hungary	A. Szörényi
РТВ	Physikalisch-Technische Bundesanstalt Braunschweig, Federal Republic of Germany	K.F. Walz E. Funck

Figure 1 – Decay schemes of 134 Cs and 137 Cs (Data taken from [4,5,6])

2. Description of the solution and of source preparation

By circular letter of October 5, 1978 the participants were informed on the organization of the comparison and on the solution to be distributed. The NBS had generously offered to make available part of an old and very pure ¹³⁷Cs solution, to adjust its concentration and chemical composition and to do the bottling.

The activity concentration was about 800 Bq \cdot mg⁻¹ in an aqueous solution of HCl (0.2 mol per dm³) with about 20 µg of CsCl per gram of solution. This composition was the same as that of the ¹³⁴Cs solution for the preceding fullscale comparison and which was to be used as efficiency tracer. No radioactive impurities had been found and the ¹³⁴Cs activity was estimated to be less than 10⁻⁴ that of ¹³⁷Cs.

Each participant, except AIEA, received 5 g of this solution in a flamesealed glass ampoule. Two NBS ampoules were filled with 3.6 g only and sent to AIEA and BIPM for ionization chamber measurements.

The air parcels were despatched at the end of November, the reference date being 1978–12–01, 00 h UT.

Source preparation

Laboratory	134 _{Cs} /137 _{Cs} mixing ratio (mass)	Source backing	Numbers of sources		Mass of solution dispensed	Wetting agent, etc.	
		Mass per cm ² (μg·cm ⁻²)	prepared	used	(mg)		
		VYNS			,, , , , , , , , , , , , , , , , ,		
AECL	1/1	(Au-Pd) 28	15	13		Catanac , Ludox	
AIEA	1/1 2/3	VYNS (Au + Pd) 35		12	10 - 32	Teepol + Ludox (4 sources) dried in open air. Dispensed on ion (7 sources) exch. resin, dried, redissolved in H ₂ O.	
BCMN	1/1	VYNS (Au) 50	11	9	10 - 28	Catanac	
BIPM	2/1 1/1 1/2	VYNS (Au) 120	43	15	15 - 55	Ludox SM 10 ¹⁴ one drop per source	
LMRI	1/1 1/1	Cellulose (Au) 45	12 12	10	20	Insulin some drops of carrier	
NBS	1/1 1/0.7	Collodion 25	10 10	9	16 - 50	Ludox or electrosprayed resin	
NPL	0.77/1	VYNS (Au) 60	15	13 13	20 - 30	Catanac + 15 mg of 50 µg∕ml Al ³⁺	
NRC	0.7/1	VYNS (Au + Pd) 40		10	31 - 34	Catanac	
ОМН	1/1 1/2	VYNS (AI) 30	40	36	12 - 29	Teepol + Ludox	
PTB	1/0.9	VYNS (Au + Pd) 45	20	18 3 6	10 - 12	Ludox	

AIEA decided to keep the ampoule unopened and to use instead an ampoule containing a similar solution which was compared with the NBS ampoule by means of a $4\overline{11}\gamma$ ionization chamber.

Details of the sources prepared by the various participants are summarized in Table 2.

3. Counting equipment

E)

All the participants made use of the efficiency-tracing method by 134 Cs, in combination with a coincidence counting technique. In addition, some other methods were applied, as shown in Table 3.

Table 3

Methods used

Laboratory	Methods used						
AECL	a) 4π (PC)-γ b) calibrated 4πγ ionization chamber c) relative γ counting						
AIEA	4π (PC)- γ using an ampoule of a different stock solution, comparison with NBS ampoule by means of a pressurized ionization chamber						
BCMN	a) 4π (PC)-γ b) efficiency calibrated Nal(TI) detector						
BIPM	$4\overline{ll}(PC)-\gamma$						
LMRI	$4ii$ (PC)- γ with one Ge(Li) detector in the γ channel						
NBS	4π (PPC)- γ shared-dead-time anticoincidence system, with NaI(TI) as γ detector						
NPL	4 īī (PC)-γ						
NRC	$4\widehat{\mathfrak{l}}$ (PPC)- γ anticoincidence counting with 2 NaI(TI) or 2 Ge(Li) detectors [13]						
OMH	$4\overline{11}$ (PC)- γ						
РТВ	 a) 4 π (PC)-γ b) 4 π (PPC₁)-γ c) 4 π (PPC₂)-γ with a large well-type Nal(TI) detector, diameter = height = 152 mm, well diameter = 50 mm, well depth = 100 mm, resolution = 9.2 %. 						

PC = proportional counter used at atmospheric pressure PPC = pressurized proportional counter. Several participants had previously replaced their old scintillation detectors by new ones in order to improve the separation of the 662 keV peak from $^{137}\mathrm{Ba}^\mathrm{m}$ and the (796 + 802) keV peaks from the tracer.

In Table 4 typical count rates, γ -channel settings and resolutions of γ -detectors (for the 662 keV line) are given.

Table 4

Some data of the counting equipments

Laboratory	Турі	cal count ro	ates (s^{-1}) γ	-channel setting	resolution of γ detector (%)	
	N¦β	Ňγ	N'c	(keV)		
AECL	25 000	2 000	1 700 c	around (796+802) and 730-1 500	6.7	
AIEA	3 000-10 000	80-240 100-320	65-190 90-275	755-870 755-∞	6.5	
BCMN	9 500	630	540	720-850 720-1 600	6.4	
BIPM	15 000	150	100	700-900	7.6	
LMRI	16 000	40		796	0.23 (⁶⁰ Co,Ge(Li))	
NBS	2 000-13 600	80–500	50–420 5–80 (AC) [*]	730-830	6.5	
NPL	8 000	300-400	270-375	710-1 500 710-880	7.7	
NRC	24 400	116 88	10–20 (Nal)(AC)* 7–14 (Ge(Li))(AC	795-910 C)* 780-810	8.5 0.45	
ОМН	10 000-20 000	200-400	160-320	750-930 750-1 540	8.0	
PTB	9 000	180 130 3 400	160 110 3 000	760-880 760-88 0 800-1 400	6.8 8.5 9.2	

I.

* For the AC results the entries under N_c^{\prime} are the anti-coincident gamma count rates.

4. Efficiency of the β detector, ε_{β}

The conditions for the applicability of the efficiency-tracing technique, namely similar β spectra and intimate mixture of the two nuclides, are seldom fulfilled. Yet many examples are known where this method has been successfully used for standardizing pure β -emitters. As the present measurements involved two isotopes of an element with simple chemistry, intimate mixing could be taken as granted. However, the difference in the β spectra gave rise to some doubts. The comparison was undertaken in order to clarify the situation and to find out unsuspected sources of error.

As stated in [1] the total β -count rate of each source plotted versus the efficiency ε_{β} to the tracer may be extrapolated to $\varepsilon_{\beta} = 1$ to give the sum of the disintegration rates of the two nuclides. The extension by Baerg et al. [2] offers a considerable variety of procedures to alter the efficiency. However, it must be emphasized that this quantity, although clearly defined theoretically, is not directly measurable. For the purpose of an extrapolation to 100 %, ε_{β} may be assimilated to the quotient N_c/N_{γ} , where N_{γ} is the γ -count rate corrected for background and dead time, N_c is the coincidence count rate corrected for background and accidental coincidences.

The γ -background rate depends on the resolution of the detector. NPL found that the 662 keV radiation did not contribute to the count rate in the γ channel, the lower limit of which was at 710 keV. AECL observed no change in background when a ¹³⁷Cs-only source was counted. BIPM made a correction of 0.54 s⁻¹ per mg of ¹³⁷Cs solution. The other participants did not mention this influence. NRC found background rates at least 50 % higher than normal, due to pile-up effects. NBS reported a small contribution from the 662 keV peak in the Y₁ channel. A correction of 0.031 s⁻¹ per mg of original ¹³⁷Cs solution was applied. On the grounds of daily checks of the count rate of 662 keV photons in the γ channel, PTB estimated this rate to be less than 4 x 10⁻⁴.

Accidental coincidences were taken into account by means of Campion's formula [7] (OMH, BIPM, PTB low-activity sources) or by the formula derived from the work of Cox and Isham (NPL, PTB high-activity sources), see [8]. These corrections are small and of minor importance, and no such corrections are required for the anti-coincidence counting results [13].

The methods used for varying \mathcal{E}_{β} are indicated in Table 5.

5. Extrapolation procedures

-

The principle of the method of efficiency tracing, measuring \mathcal{E}_{β} for the tracer in a mixed source, variation of \mathcal{E}_{β} and extrapolation of the count rate to $\mathcal{E}_{\beta} = 1$, was the same for each laboratory, but the experimental procedure varied considerably from participant to participant. The important details are presented in Table 6. With few exceptions, the quantity \mathcal{E}_{β} designates the quotient N_c/N_{γ} . Corrections for photons from $137Ba^m$ and for accidental coincidences were mentioned by some laboratories. It may be assumed that the others considered these corrections as negligible.

Table 5

Methods for varying the beta efficiency

Laboratory	Method used	Range of ε _β (%)
AECL	a) wetting agent b) cation exchange resin c) foil absorption d) carrier	93-76
AIEA	Sandwich and addition of aluminized mylar films (0.9 or 1.25 mg \cdot cm ⁻²)	92-74
BCMN	Foil absorption; VYNS film, AL foils	91-75
BIPM	Foil absorption: VYNS films, Al foils	91-69
LMRI	From 10 to 30 mg of carrier solution (100 g per I)	95-52
NBS	Threshold variation	94-77
NPL	VYNS foils	94-70
NRC	Threshold variation	92.5-82
ОМН	Different amounts of carrier	92-79
РТВ	Foil absorption: VYNS films (4 sources only)IThreshold variationIIThreshold variationIII	93.5-72 89-67 92-65

			ε _β -	\rightarrow 1, efficiend	cy extrapolation; signification of $y(x)$ and x
Laboratory		y(x)	•	x	Remarks
AECL		Ν _β		1-ε _β	N_{β}^{tot} was corrected for dead time, background and decay to mid-time of run, which typically lasted ≈ 10 h. Four runs with 2 γ -channel gates and 15 to 31 degrees of freedom. First order fits no less suitable than 2nd order. Final value is mean of 8 individual results.
۵۱۴۵	1.	$\frac{N_{\beta} - m_{134} \varepsilon_{\beta} A_{134}}{m_{137}}$		ε _β	4 values of \mathcal{E}_{β} for each source, 48 data points, 24 different plots (separately for each source and γ discrimination), linear fits.
	2.	$y(1) \rightarrow y_0(1)$		m ₁₃₇ → 0	2 different plots (for the two γ discriminations) linear fit; $m_{137} \rightarrow 0$; mean of the two results.
BCMN	a)	$\frac{N_{\beta}N_{\gamma}}{mN_{c}}$		$\frac{1-\varepsilon_{\beta}}{\varepsilon_{\beta}}$	Linear fits with 67 and 72 degrees of freedom for the two γ -channel settings, respectively. Results of a) were rejected later.
	b)	Ν _β		1 - ^ε β	
BIPM		^{N_β -m₁₃₄ ^{ε_β A₁₃₄ ^m137}}		1 - ε _β	As $\mathcal{E}_{\beta} = N_c / N_{\gamma}$ did not lead to reasonable results, an alternative and independent method for determining \mathcal{E}_{β} (to be published later) was applied. First order simultaneous adjustments [9] with sets of data points from 3 dilutions (mixing ratios see Table 2). Higher orders were less suitable.
LMRI		$\frac{N_{\beta}N_{\gamma}}{mN_{c}}$		1 - ε _β	Second order fit with 13 data points.

Table 6 (cont'd)

Laboratory	y(x)	x	Remarks
NBS	$\frac{N_{\beta} - m_{134} A_{134}(1 - N_{\gamma}/N_{\gamma})}{1 - N_{\gamma}/N_{\gamma}}$	$\frac{N_{Y}/N_{y}}{1 - N_{Y}/N_{y}}$	From 8 to 18 data points and separate 2nd order fit for each source. Unweighted mean of intercepts decay corrected and divided by source mass. N_{γ} = anticoincidence rate.
NPL	$\frac{N_{\beta} - m_{134} N_{134}}{m_{137}}$	1 - ε _β	Separate 2nd order fits for each source and for the two γ -channel settings. Final result is unweighted mean of the two individual means. $N_{\beta} = A_{134} \mathcal{E}_{\beta} (1 + \alpha_{11} \frac{1 - \mathcal{E}_{\beta}}{\mathcal{E}_{\beta}}) \text{ for the 710 - 880 keV gate,}$ $N_{\beta} = A_{134} \mathcal{E}_{\beta} \left[1 + \alpha_{21} \frac{1 - \mathcal{E}_{\beta}}{\mathcal{E}_{\beta}} + \alpha_{22} \frac{(1 - \mathcal{E}_{\beta})^2}{\mathcal{E}_{\beta}} \right] \text{ for the 710 - 1 550 keV gate,}$ The α_{11} are fitted parameters found in the separate standardization of 134_{Cs} which happened to be linear for the narrow gate: $N_{\beta} / \mathcal{E}_{\beta} = A_{134} \begin{pmatrix} 1 + \alpha_{11} & \frac{1 - \mathcal{E}_{\beta}}{\mathcal{E}_{\beta}} \end{pmatrix} \text{ for } \frac{134_{Cs}}{\mathcal{E}_{\beta}} \text{ quadratic for the wider gate:}$ $N_{\beta} / \mathcal{E}_{\beta} = A_{134} \left[1 + \alpha_{21} \frac{1 - \mathcal{E}_{\beta}}{\mathcal{E}_{\beta}} + \alpha_{22} \frac{(1 - \mathcal{E}_{\beta})^2}{\mathcal{E}_{\beta}} \right] \text{ for } ^{134}_{Cs}.$
NRC	$\frac{N_{\beta} - m_{134} A_{134}(1 - N_{\gamma}/N_{\gamma})}{m_{137}}$	N _Y N _y	14 data points taken for each γ -detector type (one or two channels). Two-dimensional analysis, when 2 γ detectors added for one channel; 3-dim. analysis, when 2 separate γ channels. Linear fitting (order defined by χ^2 test). Weighted mean of 4 results.

Laboratory	y(x)	x	Remarks
ОМН	$\frac{N_{\beta}N_{\gamma}/N_{c}-m_{134}}{m_{137}} \frac{\varepsilon_{\beta}A_{134}}{m_{137}}$	$\frac{1-\varepsilon_{\beta}}{\varepsilon_{\beta}}$	Separate linear fits for two solutions and two γ -channel settings. Weighted mean of 4 results. About 18 data points for each fit.
РТВ	Mβ m	1 - ε _β	(γ gates see Table 4) I 4 4th order fits, 37 data points, 4 sources II 5 " " 154 " " 3 " III 1 " fit 108 " " 6 " The fitted polynomials were: $\gamma = a_0 + a_1 \times$ $\gamma = a_0' + a_1' \times + a_2' \times^2$ $\gamma = a_0'' + a_1'' \times + a_3'' \times^3$ $\gamma = a_0''' + a_1''' \times + a_3'' \times^4$ The fourth order was found to be the most suitable.
Explanation	n of symbols		
N_{β} = toto	al count rate in the β channel)		
$N_{\gamma} = 1$ $N_{c} = 1$ $N_{\gamma} = an$ $A_{134} = act$ $m_{134} = ma$	ticoincidence count rate vivity concentration of the tracer s ss of ¹³⁴ Cs solution dispensed onto	corrected for colution (¹³⁴ Cs)	dead time, background (and accidental coincidences) $m_{137} = mass of {}^{137}Cs$ solution dispensed onto a mixed source) $m = m_{134} + m_{137}$ $e {}^{\epsilon}{}_{\beta} \cong N_c/N_{\gamma}$ (with the necessary corrections).

Table 6 (cont'd)

6. Calculation of the 137 Cs-activity concentration

The information received being somewhat disparate and containing some more or less obvious errors, it is not clear if there are any significant differences in the formulae used by the various participants. For the sake of clarity, it was necessary to unify the presentation and the symbols. Decay corrections were considered sufficiently straightforward to be omitted. Table 7 presents expressions

for Z = numerator and D = denominator of A $_{137} = \frac{Z}{D}$.

Ì

Table 7

Formulae used for calculating the activity concentration $A_{137} = \frac{Z}{D}$

Ζ D Laboratory AECL $\frac{y(1) - m_{134} A_{134}}{m_{137}}$ $1 + \frac{b(\alpha + \varepsilon_{\beta\gamma})}{1 + \alpha}$ BCMN LMRI PTB formula not indicated AIEA $1 + \frac{b(\alpha + \varepsilon_{\beta\gamma})}{1 + \alpha}$ BIPM NRC y(1) OMH $1 + \frac{b(\alpha + \mathcal{E}_{\beta\gamma})}{1 + \alpha}$ <u>y(1)</u> NBS ^m137 $1 + \frac{b}{1 + \alpha} (\alpha \varepsilon_{ce} + \varepsilon_{\beta\gamma})$ y(1) NPL where y(1) is the value of y(x) of the corresponding laboratory (see Table 6) for $\mathcal{E}_{\beta} = 1$, = β branching ratio of 137 Cs, b = total internal conversion coefficient for the 662 keV radiation, α $\varepsilon_{\beta\gamma}$ = γ efficiency of the β detector, = efficiency of the β detector to conversion electrons from $^{137}Ba^m$. ε_{ce}

7. Results and uncertainties

The results obtained by the ten participants are summarized in Table 8 along with the values of $\varepsilon_{\beta\gamma}$, the β -detector efficiency to 662 keV photons, and how they were determined. A graphical representation of the results is shown in Fig. 2.

Uncertainties are given at the 1σ level. Where no allowance for the uncertainty of the 134Cs activity concentration was made, we added the value from the recent 134Cs comparison (overall uncertainty of the corresponding laboratory). As may be seen from Table 7, the factor D is practically the same for all participants, since they used the same values for α and b. Therefore, the uncertainties in these constants must not be considered in assessing systematic errors from this comparison. The values recommended by the BIPM were $\alpha = 0.1104 \pm 0.0005$, $b = 0.946 \pm 0.003$ and represent weighted means as taken from Christmas and Cross [6]. The combined effect on the final result is

$$\frac{b\alpha}{1+\alpha} = 0.094\ 06\pm 0.000\ 49.$$

E.

It should further be noted that an uncertainty in $\varepsilon_{\beta\gamma}$ of 0.008 is equivalent, to the combined effect of the uncertainty in α and b as given above.

Mean values from international comparisons are often difficult to interpret and may be misleading. However, the request to "conserve" a representative result of the present comparison by means of the International Reference System for Activity Measurements of γ -ray emitters (SIR) made it necessary to take an average value. Since the weighted and unweighted means nearly coincided, an intermediate value and its (external) standard deviation were chosen:

$$A = (760.0 + 4.0) Bq \cdot mg^{-1}$$
.

A graphical comparison of all the SIR results is presented in Fig. 3.

14

Results of the measurement

		137 Cs activity	Un	certain	ties (10	<u>_)</u>	γ efficiency of the β detector	
Labo-	Method	concentration	rande	om	syste	matic	ε _{βν}	how determined
	· · · · · · · · · · · · · · · · · · ·	(Bq · mg ⁻¹)	(Bq∙mg ⁻	h(%)	(Bq•mg	- Ì)(%)	(%)	
AECL	4π(PC)-γ 4πγ(IC) rel.γ count.	760.35 760.75 762.21	0.81 1.12 1.12	0.11 0.15 0.15	1.45 1.45 1.45	0.19 0.19 0.19	0.10 <u>+</u> 0.03	estimated from [10]
AIEA	4π(PC)-γ	765.2	0.7	0.1	3.8	0.5	-	neglected
BCMN	4π (PC)-γ calibr.Nal(TI)	754.5 754.1	1.4 0.8	0.19 0.1	2.8 3.0	0.37 0.4	0.11 <u>+</u> 0.03	foil absorption
BIPM	4ἶ (PC)-γ	764.2	1.0	0.13	4.8	0.63	0.3 <u>+</u> 0.1	estimated from measurements with ⁵⁴ Mn
LMRI	4îl (PC)-γ	758.7	1.2	0.16	2.0	0.26	0.11	after [11]
NBS	4 ΙΙ (PPC)-γ (AC	756.0	0.6	0.08	2.3	0.31	0.6 <u>+</u> 0.1	interpolated between results from ⁵¹ Cr and ⁵⁴ Mn
NPL	4π (PC)-γ	757.17	0.45	0.06	+ 2.7 - 0.9	+ 1.04 - 0.35		after [12]
NRC	4π (PPC)-γ (AC)	759.55	0.34	0.05	2.6	0.34	0.32 0.21	for Nal(Tl) in γ channel for Ge(Li) " (calculated or measured)
ОМН	4 ÎÎ (PC)-γ	766.65	0.63	0.08	3.1	0.41	0.10 <u>+</u> 0.05	LI4] estimated
	4π(PC)-γ	757.6	0.3	0.04	1.6	0.21	0.11 +0.04	with sources of ⁷ Be and
PTB	4 īi (PPC ₁)-γ 4 īi (PPC ₂)-γ (we	760.1	0.5 0.5	0.07 0.07	2.7 2.7	0.35 0.35	0.25 <u>+</u> 0.05	54Mn and interpolated

-

References

- P.J. Campion, J.G.V. Taylor and J.S. Merritt, The efficiency tracing technique for eliminating self-absorption errors in 4πβ-counting, Int. J. Appl. Radiat. and Isotopes 8, 8-19 (1960)
- [2] A.P. Baerg, S. Meghir and G.C. Bowes, Extension of the efficiency tracing method for the calibration of pure β-emitters, ibid. <u>15</u>, 279-287 (1964)
- [3] J.S. Merritt and J.G.V. Taylor, Decay of Cesium-137 determined by absolute counting methods, Anal. Chem. 37, 351-354 (1965)
- [4] J.S. Merritt and F.H. Gibson, Standardization of ¹³⁷Cs by the 4π (PC)-γ efficiency-tracing method with ¹³⁴Cs as tracer, AECL-6203 (1979), 19 p.
- [5] R.L. Bunting, Nuclear Data Sheets A = 137, Academic Press, New York and London, Vol. 15, No. 3 (1975)
- [6] P. Christmas and P. Cross, The decay of ¹³⁷Cs determined by β-ray spectrometry, Metrologia 14, 157–166 (1978)
- [7] P.J. Campion, The standardization of radioisotopes by the beta-gamma coincidence method using high efficiency detectors, Int. J. Appl. Radiat. and Isotopes 4, 232 (1959)
- [8] D. Smith, Improved correction formulae for coincidence counting, Nucl. Instr. and Meth. 152, 505–519 (1978)
- [9] J.W. Müller, Ajustements simultanés, CIPM, Procès-Verbaux des séances, 2^e série, tome 47, 68^e session (1979), to be published
- [10] J.S. Merritt and J.G.V. Taylor, Response of 4π proportional counters to γ-rays, in "Standardization of Radionuclides", IAEA, Vienna, 147–152 (1967)
- [11] M. Lainé, J.-P. Pérolat, J. Bouchard et Y. Le Gallic, Les coincidences 4πβ-γ au laboratoire de métrologie de la radioactivité, Rapport CEA-R-4131, Saclay (1971), 55 p.
- [12] A. Williams and P.J. Campion, Measurement of the γ-sensitivity of a 41τβ-counter, Int. J. Appl. Radiat. and Isotopes 14, 533-540 (1963)
- [13] A.P. Baerg, K. Munzenmayer and G.C. Bowes, Live-timed anti-coincidence counting with extending dead-time circuitry, Metrologia <u>12</u>, 77-80 (1976)

[14] A.P. Baerg, Pressurized proportional counters for coincidence measurements, Nucl. Instr. and Meth. 112, 95–99 (1973)