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1. 1 ntroduc tion 

A complete set of limiting values for the.expectation and the 
variance of the number of registered pulses has been obtained in 
the past years for the practically important case of an original Poisson 
process which has been distorted by a dead time. A review of the results 
can be found e.g. in [lJ, where the references to sorne of the earlier 
work are included. From a systematic point of view, these individual 
and sometimes quite laborious derivations are not very satisfactory: _ ( 
one might prefer a mathematically more elegant and coherent approach 
where the different experimental conditions can be taken into account 
by an appropriate specification. 

As a matter of fact, such a general treatment is indeed possible and 
the main mathematical tools have been available for many years. 
The approach to be followed is sketched in the pioneering work of 
Smith ( [2, 3J) and ail we need is a slight generalization of his results. 

On the other hand l no effort will be made to arrive at a high degree 
of mathematical rigour. Anybody interested in matters of convergence 
region 9f s, uniqueness of a solutiofl,~'minimOim requirements for the 
moments, etc. 1 should go back to Smithls papers, where the references 
to earlier work (in particular by Feller l Tëcklind, Doob and Blackwell) 
are given. In view of the simple practical applications we have in mind, 
such questions seem to be of minor importance here. 

For our purpose, any interval density Lf k(t) describing the arrivai time 
of event number k can be written in the form of the convolution 

lf (t) = f(t) * ~ f(t) ~ *(k-l) 
k 0 ~ ~ , 

k = 1, 2, 3, ••• , 

where f(t) denotes the interval density between registered counts, 
while of(t) is the density for the first event after t = 0 which depends 

(1) 
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on the choice of the time origin. This general case is called a modified 
renewal process [4J and Table 1 shows how the initial density of(t) 
should be chosen for the usual three experimental counting conditions. 

Table 1 - Choice of of(t) for the different counting processes, and 
notation for multiple densities*; f(t) is the interarrival density 

and ml the corresponding mean value of t (see section 3}0 

Type of counting process initial density 
f(t) 

o 

multiple densities 
~ k(t) 

ord inary process (or) f(t) 
co 

equil ibrium process (eq) _1 J f(x) dx = g(t) 
ml 

t 

free counter process (fr) f(t)j.r =0 = h(t) 

The cumulative interval densities are defined by 

t 

~k(t) = J lJ'k(x) dx ; 

o 

orY'k(t) = fk(t) 

eq Lfk (f) = gk (t) 

frLf> k (t) = hk (t) 

- f 

in the more traditional terminology they correspond to Fk(t), Gk(t) 
and H k (t) for the processes of Table 1 0 

The notion of a modified process is thus seen to be sufficiently general 
to coyer ail the three practical cases one is rormally interested in 0 

Therefore, the basic theoretical de've~topments have to be carried out 
only once and they can then be adapted to the special needs o This will 

(2) 

give us general formulae valid for any ordinary, equilibrium or free counter 
renewal process. Finally, and in particular, these expressions can be 
applied to an original Poisson process which has been disturbed by a dead 
time of either the extended or the non-extended type. These final results 
will confirm the expressions found previously and are intended to illustrate 
the usefulness of this unified approach 0 

* These correspondences are given for the convenience of the reader 
who is familiar with the usual notation; they will not be used 
explicitly in what follows. 
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2. Some preliminary relations 

Let us denote by k the number of pulses counted in a time interval t. 
The quantities we are mainly interested in qre the asymftotic mean value 
and the variance of k, for which we write k(t) and cr k(t), respectively. 
Asymptotic means here that the counting interval t is assumed to be very 
large compared to, say, the mean distance in time between subsequent 
counts. 

For an integer variable like k it is often mathematically convenient to use 
factorial moments. Instead of determining directly the usual moments, 
we prefer to evaluate first the (ordinary) factorial moments ~r (t) which 
are defined by the expectation (cf. a Iso Appendix of [5J) 

Wr (1) '" E ! k(r) l ' (3) 

where k(r) = k (k-1) (k-2) ••• (k-r+l) is a (falling) r-fdctorial*. 

Both k and r ~ k are positive integersi r is called the order of the moment. 

It is readily verified that for the two moments of lowest order we have** 
f 

~l(t) = E ~k~ = k(t) = ml (t), 

Y:'2(t) = E ~k(k-l)~ = m
2

(t)-m l (t), 
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hence k (t) = ~ 1 (t) and 

()~ (t) = m2 (t) - m~ (t) = f2 (t) + <f l (t) - ~~ (t) • 

(4a) 

(4b) 

The (total) probability density d (t) for ail events k, which is also 
knowr,l as renewal density, is in the'19.enera\'case given by 

co 
d (t) = 2: tp. (t) • 

j= 1 1 

* This follows the usual practice. An altern)tive definition based on the 
less commonly used "rising" façtorials k (r _ k (k+l) (k+2) ••• (k+r-1) 
would also be possible and k(2) has in fact been applied by Cox [4J 
in this contexte However, this choice does not seem to provide any 
additiona 1 advantage. 

** For the definition of the moments m (t) see Section 3. 
r 

(5) 
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The corresponding cumulative density 

t 

D(t) == f d(x) dx (6) 

o 

is sometimes also called renewal function. 

ln order to express the factorial moments defined in (3) in terms of the 
interval distributions, we need a general relation between the number k 
of arrivais in a given time interval t and the interval densities '-Pk for 
the arrivai of event numberk. This is known to be given by (see e.g. [4J) 

t t 

Prob (k) = f f k(x) dx - f Lf k+1 (x) dx 

o o 

Therefore" the general expression for the factorial moments can be 
written as 

co 

)f (t) = :2 k(). Prob (k) 
r . k=O r 

=~ k(k-l) ••• (k-r+1) [~k(t) - ~k+1(t)J. 
k=r 

2. Evaluation of the first two factorial moments 

(7) 

(8) 

J'or the determination of the 'éx~pèctati~n k(t) and the variance (j"'~(t) 
of the number of pulses k within the measuring time t, it is sufficient, 
according to (4),to evaluate 1f

1 
(t) and W

2 
(t). For r = 1 the relation (8) 

gives immediately 

co co 

~1 (t) = :2 k [~k(t) - ~k+1 (t)] = 2 ~k(t) • 
k=l k=l 

The second factorial moment is obtained 1 ikewise as 

co 

1f2 (t) = 2 k (k-l) [~k(t) - ~k+1(t)J 
k=2 

co 

= 2 2: (k-l) ~k(t) • 
k=2 

(9) 

(10) 
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As a consequence of (1) it is practical to use in what follows integral 
transforms where convolutions correspond to simple multiplicationso 
Applying Laplace transforms in the usual way, we can therefore also 
write 

ex> 
..... 1 "" W1 (s) = - 2: L{>k(s) 

s k=l 

ex> 

W 2 (s) = 2 2: (k-l) 0 qk(s) • 
i s k=2 

and 

For the general case of a modified renewal process, the transformed 
interval density (1) is given by 

.'"'-' .-v ~ k-1 <fl (s) = 0 f{s) • Lf(s)] • 

For the first two factorial moments we therefore have for a modified 
process (m) 

ex> ,.., 

2: f(s) [f{s)] k-1 m'f 1 (s) = 
1 s 

k=l 
0 

-.J 

ex> f{s) 
f(s) L f(s)i 

0 
= = 

s ,-../ 
, 

o 0-0 s [1 - f{s)] 1-
ex> 

IV 2 2: (k-l) f(s) [f(s)] k-1 m':f 2 (s) = 
s k=2 0 

ex> 

3. Asymptotic values 

As a result of the well-known Tauber theorem which stàtes that 

ITm lf (t) = lim [s. QJ (s)J 1 

t ~ex> m r s ~ 0 mi r 

limiting values of m~ r (t) for large intervals t can be obtained by 
expanding the corresponding transform into a power series in s. For ...., 
this purpose we recall that any transformed density f (s) may be written 

32 

(9 1) 

(10 1
) 

(1') 

(11) 

(12) 

(13 ) 
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in the form 
co 

f(s) :: E ~ e -st ~ = J [1 - st + 2
1 ! (st)2 - ; ~ (st)3 + ••• ] • f(t) dt 

o 

l 3 6' 5 • m
3 

(t) + ••• , 

co 

where m/t) :;;;; E.~ t r ~ = J t r 
• f(t) dt 

o 
are the ordinary moments of t (of order r). 

For the initial density f(t) we put likewise 
o 

"" l 2 -f(s) = 1 - s· m (t) + - som (t) + 
o 0 l 2 0 2 • 0 0 

By substituting (14) into (11) we find for a modified process 
. 1 2 -

1-5· ml +-5 0 m + ••• 
"'-' 0 2 0 2 

m r 1 (5) = 2 1 
5 (m 1 - 2" 5 • m2 + 0 o. ) 

which, upon simple dividing, leods to 

Since 

(140) 

(14b) 

( 15) 

~ 

we get for m~2 (s) .in the some way, but ofter 0 somewhat lengthier division, 

1 2 - 1 2 -
2 (l-som

1
+2"s om

2
+ ••• )(1-sm

l
+2"s m

2
+ •• o) 

m f2 (s) = 3" . 2 + 2 l l 2)-
5 ml - sm 1 m2 5 (3' ml m3 + '4 m2 + 

2 2 l 0 ml m2 ...J _0- -(- + ---) 
3 2 223 

5 ml 5 ml ml ml 

2 1 3 
2 

oml om2 - m2 oml m2 m
3 

m
2 

+ - (- + -- + - -) ( 16) 
2 3 3 4 

s ml 2 ml ml 3 ml 4 ml 
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....., ,..J 

Both m~l (s) and m'f2 (s) have only been developped into power series 
up to terms proportional to l/s and it is shown in the Appendix why this 
is sufficient. 

Before the variance can be found, we have to evaluate the term mW~ (t) 
(or its transform) which appears in (4b). However, this is no major obstacle. 
Since (15) shows that m r;fl (s) is of the form 

.J ....1 a b 
lU (s) = - + -

m~l . 2 ' 
s s 

this corresponds to the original 

m If 1 (t) ,-.J a· t + b , 

and therefore 

for t ~ 00, 

2 ,..., 2 2 2 
mlf 1 (t) a t +2abt +b , 

the transform of which is 

2 

32 

II kr~ (I)l 2 a 2ab b
2 

"'"' + + -3- 2 
, for s ~ 0 • (1 7) 

ln our case, due to 

a = 

s s s 

(15) , we have 

and ' b = 
m2 - 2 om 1 ml 

2 
2 ml 

According to (4b) the transformed variance for a modified process is given by 

-' 2 ,-.J ,-.J ~ 2 l 
. m 0- k (s) = m ~ 2 (s) + m '=I! L,(s~,>:- ,;e (m,~ 1 (t) ~ • 

By substituting (15), (16) and (17) this can be brought, after sorne 
rearrangements, into the form 

~ [m2 -3 m~ l + ~ [oml -
2 

........ 2 m om2 
:::::! ~+ m(J k (s) 2 -2 

s ml s ml ml ml 

m
2 oml m2 

2 m
3 

+ : m!] - - 2"- 3 - - 3 
2 ml ml 3 ml 4 ml 

(18) 
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The originals of (15) and (18) are the asymptotic expressions looked for, 
namely 

II. 
t 

k (t) 
.rv = 

m 
ml 

2 m2 ,..., 
m() k (t) - (-3 

ml 

oml m2 
+ - -- -2 

ml 2 ml 

1 
-). t + 

ml ml 

1 
-- ( m 2 0 1 

ml 

and 

k1 

Instead of using the ordinary moments mr (t) given in (14), the formulae 
can sometimes be simplified by adopting instead the central moments 

(19) 

(20) 

f-t r (t) which are defined by E J (1 - ml) rI· 

Denoting as is usual P'2 by 0- , the change can be made by the substitution 
f 

2 2 
m2 = a- + ml' 

2 3 
= P-'3 + 3 ml ()' + ml' , 

and 1 ikewise for the moments of the density f (t). After sorne simple 
o 

algebra we arrive at 
2 

t oml (J 
k (t) 

IV 
+ + and - -- -2 m 2 ml ml 2 ml 

2 2 ~",,'; 2 
2 P'3 5 () 

4 

m()~ (t) 
cr-- <J' ml~ ::: t + + 

o 0 
+ - . -2- - -- 3" -4 3 3 

ml 12 ml ml 3 ml 4 ml 

(21 ) 

(22) 

(23) 

The four asymptotic relations (19), (20), (22) and (23) are the main result 
of the present studYi the subsequent sections deal with specific applications. 

Possibly the above relations hint to a general rule implying that an asymp­
totic moment of order r for k is specified by the moments of the inter­
arrivai time which go to order r+ 1 for the density f(t), but only to order r 
for of(t). However, since this conjecture is for the moment only based on 
the cases with r = 1 and 2, it has to be considered with due caution. 
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4. Specification of the type of countinurocess 

The general formulae which are valid for a modified renewal process 
will now be specialized to the usual three types of counting processes 
mentioned in Table 1. 

a) .9.!~i~~l..P.!:.0.E'='~ 

This is the simplest case. As of (t) is identical with f (t), we can 
simply put 0 ml = ml and 0 m2 = m2 to obtain from (19) and (20) the 

corresponding expressions in terms of ordinary moments, i.e. 

.... t m2 
k (t) ::::: - 1 +--

or 2 , 
ml 2 ml 

2 2 
2 m2 1 m

2 
5 m

2 
m

3 "'-' 

orO- k (t) (- --) • t - -2 + -4 3" 3 
3 ml ml 2 ml 4 ml ml 

These resultsare identical to formula (2.8) and theorem 5* in [2J • 
ln terms of central moments, the re lations are 

2 
t () .... 

k(t) ::::::: + --2 , or 2 2 ml ml 

2 
5 

4 
2 ~3 2 <J ('j' 

0- k (t) 
rJ 

3" • t + + 4" - - 3" or . 
12 4 ml ml 3 ml 

(24) 

(25) 

(26) 

(27) 

Equations (26) and (27) agree with the corresponding relations given in [4J • 

b) .§.<.iuiÎJ.~i.u~_e..r~c:.e~~ 

As noted in Table 1, the initial density of(t) has to be chosen for 
an equi 1 ibrium process such that 

o 

thus 
o 

f(t) 

,-.J 

ex> 

= -~ f f(x) dx , 
ml 

t 

f(s) = 
m • s 

1 

* taking into account the notation introduced in (1.4) 

(28a) 

(28b) 
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By using the power expansion (14) and equating the corresponding 
coefficients of sr, we find (see [6J, eq. 40) the general relation 

mr+ 1 
for r = 0, l , 2, m = 

(r+ 1) • ml 
, .. . , 

0 r 

hence 
m

2 
m

3 
oml = 

2 ml om2 = 
3 ml 

, 

and 
(T'2 = 

o 

Substitution of (29) into the general formulae (19) and (20) leads to 

A t 
k(t) = 

eq ml' 

eqo-' ~'(t) 
l 
-). t + 

ml 

where (30) is known to be an exact resulto 

ln terms of central moments, the variance is also given by 

2 l ~4 l f 
~(t) ....., ~ • t + + - -4 - - -33 

eq k 3 
ml 6 2 ml 3 ml 

Equation (32) agrees with the result given in [3J 

~, ~,. "f .• 

(29) 

(30) 

(31) 

(32) 

For this case the results for the general modified process cannot be 
simplifiedo The moments omr or oP-r have to be taken as those belonging 
to the density f(t), but in the absence of a dead time. More explicit 
expressions are possible only if we specify the original counting process. 

5. The case of an original Po isson process 

After having specialized the general results to certain experimental 
counting conditions which depend on the 'way the process is started 
(choice of time origin), we make an important further restriction by assuming 
that the original process (i.e 0 before insertion of a dead time) was of 
the Poisson type, with count rate p 0 This will lead us to the now well-known 
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asymptotic formulae which have been obtained before separately 
by repeated individual attacks. They are now derived as very special 
cases in a more general frame. 

It is obviously of no relevance for the result whether one starts from 
the expression with ordinary or with central moments. We restrict 
ourse Ives to the latter ones as they are often a bit simpler; they are 
listed in Table 2 for convenience. 

Table 2 - Moments for the interval density of a dead-time-distorted 

Poisson process. We use the abbreviations x = p'L and y = eX , where 

f is the origina 1 count rate. 

Moment 

lL3 

for dead time 't 

non-extended 1 extended 

1 f (1 + x) 

1 
p2 

2 

f3 

1 

1 
Py 

p12 Y (y - 2 x) 

2 2 3 2 
~ y (y - 3 xy + '2 x ) 1 

for free 
counter process 

1 
ç; 

1 

~ 
2 

f3 

It may be practical to give the formulae for expectation and variance also 
in tabular form (Tables 3 and 4). They ail have been known before; 
for sorne earl ier refe re nces see [1] 0 
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Table 3 - Asymptotic expectation and variance for a Poisson process of rate" ' 
distorted by a non-extended dead time rc 0 The abbreviations x = ~'r 
and Â·= 1/ (1 +x) are used. " .,' " .. 

,.. 
Process k(t) 

ordinary 

equilibrium 

free counter 
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x 
Table 4 - As in Table 3, but for an extended dead time '"C • We put e = y. 

Process 

ordinary 

equil ibrium 

A 

k(t) 

1 - (9 t - x) 
y 

1 - . pt 
Y 

2 
(J k (t) 

-k [(y-2x) pt..; x(y-3x)] 
y 

-k [(y-2x) r t + x
2

] 
y 

free counter 
1 
- (9 t + Y - 1 - x) 
y -k [(y-2x) f> t + 1 - Y + x(2-Y+3X)] 

y 

Incidentally, it seems reasonable to think that such a more general framework 
as outlined in section 4 would also be the appropriate basis for a possible 
generalization of the study of counting processes to a more general type 
of dead time or to one which might be taken as a random quantity. 

60 Asymptotic variance-to-mean ratios 

It may be worthwhile to have a quick look at the asymptotic forms 
which the variance-to-mean ratio, defined by 

V(t) - , 

takes for the different cases considered above. 

(33) 

Some time ago, an example of the exact numerical behaviour of V has 
been prèsented for an equilibrium p~~;~'~~ anda non-extended dead time [71: 
These results revealed a fairly complicated structure which, however, couleT 
be very weil confirmed by Monte Carlo simulations. More recently this 
ratio V has been studied very thoroughly by Libert [a] for the three 
processes and for both types of dead time. As little of real interest can be 
added to his results, we shall confine ourse Ives to a cursory treatment. 

By using the general relations (22) and (23) it is obviously possible to give 
an expression for the asymptotic ratio V(t), and the same is true for the 
specifie counting processes, using for instance the relations given in (26) 
and (27) or in (30) and (31). However, no further simplifications seem 
to be possible for these general expressions. 

* Note that in the legend of Fig. 1 the expressions "full line" and 
"broken line" should be interchanged. 
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It is only by assuming a specifie original process, in particular a Poisson 
process, that some additiona 1 (a Ithough modest) deve lopments become 
possible. Let us consider the various cases separately in what follows. 

A - V(t) for a non-extended dead time 

By substituting the corresponding expressions from Table 3 into (33) 
we obtain 

Â 2 3 

V(t) 
1 - ~. - (12 - 6x - 4x - x ) 

'" 12 • ___ , 12 

1 - îJl(l _1. AX) 
2 

or 

where ~ = ~ = -
t 

, 

By a se ries deve lopme nt of the denom inator we can a Iso write (to first 
order in ,J» 

32 

(34a) 

V(t) ,-...1 À
2 

[1 + "". 1\ x (12 + 4x + x2)J . (34b) 
or 12 

This case is particularly simple. By use of Table 3 we find 

1 "\3~ 1 2 2J eq V(t) '"V Àf.J-· /' LiL + '6 À x (6 + 4x + x ) 

." l'!,' ...... , 

S ince from Table 3 we have 

"'_1 ,....) 1 1 2 -:1 -...1 1 '\ 
k () ( À) - - (1 - V'. ~) fr t = >; ~ + 2" x À p-- 2 ' 

there results for this case 

V(t) "" ",2 [1 + .J'. Àx (18 + 4x + x2)]. (1 -'-Jh. /\x .6) 
fr 12 12 

.-v "'\2[ q., ~x 2] = 1\ 1 + v'· 12 (12 + 4x + x) , 

which coincides with the corresponding as}'mptotic value (34b) for the 
ordinary process. 

(35) 

(36) 
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Hence, neglecting the small difference in the term which is proportional 
to x2 1!t', we arrive at a common asymptotic approximation for non-extended 
(n) dead times, name Iy 

V (t) -' 1\2 (1 + '\JI. Â x) , 
n 

which is supposed to be adequate for most practical cases. 

B - V(t) for an extended dead time 

From the values given in Table 4 we can form the ratio 

V(t) ~ 1. [y - 2x - 'lJ' (y - 3x)] = 1 
or y 1 - 17' 

which is rigorous for ~.~ 0.5 (i.e. t .? 2'r). 

x (2 - 3 1.?» 
y (1 -1Jl) , 

Bya series development of the denominator, we obtain the simple 
approximdte form 

v (t) -' 1 - ~ (2 - 1JI) • 
or y 

ln this case the ratio V becomes 

V(t) ~ 1. [(y -2x) + x
2 

] = 
eq y ~ 

and the formula is exact for îY' ~ 1 • 

1 - ~ (2 - ~) , 
y 

,,' ~,. ..... , ", 

(37) 

(38a) 

(38b) 

(39) 

After sorne rearrangements, V can here be brought into the form 

V (t ) N 1 _ 1.. r 2 x (~- 1) + y 
2 

- 3 x 
2 

- 1 ] (4 Da) 
fr y t p.- + y - 1 - x ' 

a result which is rigorous for t ~ 21; • 

An equivalent form including 1.9J instead of p.-, exact for ,J", 0.5, reads 

[ 
2 2 2 ] V(t) r../ 1 _1. 2x + 1.9> (y - 1 - 2x - 3x) • (40b) 

fr y x + Jl (y - 1 - x) 

A comparison of the results given for an extended de ad time with those 
indicated in [8J shows that they are identical or equivalent. 
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As a common asymptotic approximation for an extended (e) dead time, 
the expression 

v (t) .-..; 1 - ~ (2 - 'lJI) 
e y 

can be used. 

It has been noted by Libert that in general a much spoother behaviour 
of V will be obtained if the empirica 1 mean va lue k(t) is used as the 
independent variable instead of the original expectation p.- = ft. 
ln a few cases - especially for an extended de ad time - exact relations 
for V can then be obtained (for -J1~ 0.5 or 1). Thus, starting from (38a), 
which may be written as 

1 x (2 -3"') 
orV(t) = 1 - Y (rv- x) • (tt-- x)· (1 -'lJI) , 

and substituting 

k = 1. (I.L - x) 
y r ' 

we arrive at 

or 
V(t) = 1 _ k. ~ (2 - 3 J') 

(1 _ 1f)2 

Likewise one gets for the equilibrium case from (39) 

V(t)' = 1 - p.- ~ (2 -~) = 1 - k • J1 (2 -~) • 
eq y j..L 

... 
Both (42) and (43), where V is a linear function of k, have already 
be e n 9 i ve n in [8] • 

... 

(41 ) 

(42) 

(43) 

Finally, we may state that for the non-extend.~d case, since ~::: 1 - k,:p 
and il x' = 1 - ï\ , (37) can also be wdtt'en as ' 

V (t) .-v (1 - k'lJ)2 • (1 + k ,,2) . 
n 

Similarly, it follows from (41) for an extended dead time, where 
k.-v ~/y, that 

... 

(44) 

V (t) -v 1 - ~ (2 -1Jl) k • (45) 
e 

Hence, a simple approximate form, valid for any type of dead time, is 
given by 

V (t) .-v 1 - 2 ~ • k • (46) 
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The variance-to-mean ratio is a practical means of describing the deviation 
of the experimental statistics from that of a Poisson process. However, 
it is necessari Iy an incomplete characteristic and in particu lar it should 
not be considered as a standard method for determining the dead time 
involved. Besides, there will often exist additional contributions to the 
variance (as e.g. fluctuations in the detection efficiency) which are 
difficult to measure separately. In any case, such a result would need 
confirmation by an independent method. 

APPENDIX 

On the series development of Laplace transforms 

The question has recently been asked by one of our correspondents 
why the formai power series developments of a Laplace transform (as they 
have been.used here e.g. in section 3) are always stopped at terms which 
are proportional to l/s. As this problem may also come up to the reader, 
we sha Il try to a nswe r it he re . 

For this purpose let us consider a function F{t), the transform of which 
presents itself in the form of a power series in s, thus 

1 1 
,...J • n 1 m 1 
F{s) =i~F{t)~ = 2:c. 'sl = La ._+ 2: b 'sm-, (Al) 

j 1 n=l n sn m=l m 

where the coefficients c. , a and b are independent of s, and with 
1 n m ni and m 1 ~ 1 • 

For the usual one-sided definition of the transform of a given function 
f{t), na"!'lely" .".,..'; 

00 

f{s) =i ~J{t)~ - J f{t) • e -st dt , 
o 

where the original variable t is integrated over positive values, 
the well-known rule for differentiation (of order m) of a function f{t) 
says that 

èi ~ f{m){t) ~ = sm. 1'{s) - i sm-j. fO-l){O) , 

j=l 

with f{O){t) _ f{t) and m=O, 1,2, ••• 

(A2) 

(A3) 
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An annoying problem seems to arise here From the need to know in (A3) 
the derivatives of f(t) at the origine Happily" this can be circumvented 
in the following way. If f(t) vanishes for negative arguments (which is 
our case since t is a positive time interval), the integration in the defining 
transform can also be performed From - co to + co • In other words, we may 
interpret our transformed functions as two-sided (or bilateral) Laplace 
transforms, i.e. 

co 

f -st 
f(t) • e dt. 

-co 

ln this case, however, the rule for differentiation is much simpler 
(as may be found in any good textbook) and reads 

or likewise 

...p-1~m.-J 1 0..." ~ s • f (s) ~ 

r-' 
Let us how make the special choice f(t) = U(t), hence f(s) = l/s. 
ln order to determine the original of r(s), we look at the second sum 
in (A 1). For any term m ~ 1 we get, by comparing with (A6), 

l j 
m 

-1 m 1 d ët b s • - = b • - U(t) = 0, 
"m s m dtm 

for t f 0 • 

"""' This shows that in the series development of F(s) in (A 1) it will be 
sufficient to consider the first sum over n, since ail the originals 
corresp~nding to the terms of the sum ever m'yanish according to (A7). 
The highest power in s to be considered is thus s-l. Therefore, the 
original function corresponding to (A l)is given by 

ni a 
0::::::::- n n-1 

F(t) = L (n -1) 1 • t , 
n=l • 

for t '> O. 

-1 -2 
ln particular, F(t) has no terms proportional to t or t , etc. 

(A4) 

(A5) 

(A6) 

(A7) 

This is only apparently different if algebraic operations have first to be 
performed with the transformed quantities (e.g. multiplication): the s-l rule 
then has to be respected for the final transformed result of which the 
original is determined by a term-by-term inversion. 
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