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Abstract: We reexamine the source-pulser method of 
measuring dead time, which is an interesting 

variant of the we II-known two-source method. A des
cription based on the underlying statistical processes is 
given which leads to an improved expression for the dead 
time to be determined. Thereby use has to be made of 
a correction factor (-L discussed previously. The results 
permit to extend the application of the method and 
to check the va 1 idity of the simple approximate formula 
used till now. 

1. 1 ntroduction 

ln the last two or three decades, a number of methods have been 
proposed to measure the dead time of a counting system. For a recent 
review of this field see [1] or [2]. The well-known two-source method 
has given rise to several variants, one of which is the source-pulser 
method where one source is replaced by a train of periodic pulses. The 
merits of this version have been described in sorne detail by Baerg [3J 
(se e a 1 so [4]). 

One of the virtues of this method lies in the fact that the dead time' 
can be obtained by applying a simple formula which involves only directly 
measured quantities, namelythe oscillator frequency )), the experimental 
source rates rand r)), measured without and with the periodic pulse train 
superimposed, res~ectively. For a non-extended dead time, its value is 
the n de te rm i ne d L 3, 4 J by 

'r - - 1-_l[ ~rv-rJ o r V· (1) 

The derivation of this formula relies on a number of assumptions on the 
stochastic nature of the superimposed process and the survival probabilities 
for the pulses which are difficult to justify in detail. On the other hand, 
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careful experiments have verified at various laboratories that (1) gives 
excellent results for a large range of parameters which are of practical 
interest. Only when » exceeds a value of about (3~)-1, sorne irregu
larities begin to appear in calculated numerical values for the dead 
times [5J which are attributed to the approximate nature of (1), although 
the exact origin of the trouble could not be determined. 

ln view of this somewhat unclear situation it seemed worthwhile to try 
to arrive at an exact description of the underlying stochastic processes, 
in particular for the case of a non-extended dead time. Such an approach 
is presented in what follows. 

2. The four interval densities involved 

ln order to derive the observable count rate of the superposition, 
we have to determine the dead-time losses for both components of the 
process. For the sake of simplicity these will be called f - and v-pulses 
for those originating from the source and the pulse generator respectively. 
The calcul.ation is then based on the simple idea of the balance equation [6]. 
This relation states that the new count rate is equal to the old one minus 
the dead-time losses, and it has to be applied twice. 

For evaluating the loss g produced by the dead time ft" of a given registered 
pulse, we have to know the (total) density D(t) of the following events 
(of a certain type) in the original sequence (i.e. without dead time), since 

1:" 

n = r Dx(t) dt , 
Akx J (2) 

o 

where t is the time interval between the moment a pulse was registered 
(at t = 0) and the arrivai of a subsequent ever:'t. The index x characterised 
the "start" and "stop" pulses. As th'erë-'are two types of events in the 
superposition considered, four different interval densities and losses have 
to be distinguished, i.e. x may stand for Il p~", "~lJl, "Vf" or "))V". 

Let us consider briefly these four cases for D (t) , namely 
x 

a) density of original r -pulses following a registe red fi -pu Ise, 

b) Il Il Il v- Il Il Il Il f- Il , 
c) Il Il Il f1 - Il Il Il Il )J- Il , 
d) Il Il Il }J- Il Il Il Il )J- Il 

As the original sequence of pulses from the source is assumed to form 
a Poisson process (with count rate ~ ), which is known to be "memoryless", 
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we find for a) and c), for the conditional (integral) densities, 

ex> k-1 
DfS' (t) = D»o (t) = ~ :2 (\> t) • e- ft. U(t) = f' • U(t) , (3) 

l k= 1 (k - 1) ! 

i.e. a constant value t' for ail intervals t > O. 

Similarly, case d) gives rise to a simple result, namely 

ex> 

Dvv(t) =:> S(t-kT), 
k=l 

with T = li)) , (4) 

which is a series of regularly spaced S -functions (also known as Dirac comb). 

As for case b) one might feel tempted to assume complete independence 
between the f - and)} -pulses. In this situation we would axpect 

t ex> 1 
Dp» (t) = :2 T' U(t - [k - 1J T) • U(kT - t) = )} • U(t) • 

k=l 

However, the assumed independence holds only for the original ~- ahd 
)} -pulses. The fact that a certain p -pulse has been registered (at t = 0) 

allows us to draw sorne conclusion about the possible position of the 
precedingv -event. Thus, for instance, this pulse cannot have arrived 
within the time interval from - rr to 0 (unless it was eliminated by another 
counted t' -pulse), since such a pulse would have suppressed the f -event 
at the time origine The real interval distribution for case b) is therefore 
more complicated. This problem has been treated recently in [7J where 
the density considered, called D(t), was evaluated by a recursive numerical 
method. The corresponding loss due to the dead time of the ~-pulse IS 

give n by 

·,el~V = ) D (t) dt = (.t • y'T. 

o 

p_ is a correction factor which depends e .g. on the two ratios pl = ç> I)J 
and 'LI = 't'/T. As a result of the correlation described above, we have 
always p-- >,.. 1. The correction factor iL (?" ~I) has been extensively 
tabulated in [7J. . 

The losses due to the dead time of a registered pulse can therefore be 
described as indicated in Table 1. 

(5) 
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Table l - Dead-time losses produced by a registered pulse for the two types 
of e ve nts. 

[[vrrJJ is the largest integer below V<Land therefore vanishes 

for cr L T • 

Losses within 

1 

Type of 
re giste red 

pulse 
case 

- fo r type ~ 1 
1 case 
1 
1 

a) yT 1 c) 1 
1 

b) p'l 1 d) 1 

3. Sketch of the new evaluation 

'L 

- for type y 

tL')}'r 

[ [VOT] ] 

1 t is practica 1 to introduce the notion of transm ission factors in what 
follows. For f'-pulses, for instance, this quantity is defined by the ratio 

T = observed count rate of \' -pulses 
P original count rate of fi-puIses 

, (6) 

and likewise for the -V-pulses or for the superposition. 

Apart from section 5, the dead times involved are always assumed to be 
of the non-extended type. For the sake of simplicity, however, the index 
n or e (on the le ft) wi 1\ a Iways be om itted for the transmission factors 
when no confusion is likely to happen. 

The derivation of the transmission factors is first done for an arbitrary value 
of 'l . After having reached some general conclusions, the formulae will 
be spec.ified for the case where 't dQ&,S,not exceed l/v . 

Taking into account Table 1, the balance equation for the count rates 
becomes 

- fo r f' - p u 1 se s : 

f> Tf = \' - [f Tf· fi'ï + )} T)) • f 1 

where the expression in brackets represents the losses due to the dead time 
of re gis te re d f - and )} - p u 1 se s. He n c e 

T r = l - T ( P Tf +)) T)) ) • (7) 



5 

Sim il a ri y, it be co mes 

- fo r» - p u 1 se s : 

)} T)l =)J - [fi Tf' ~ V 1" + )) T)} • K ] ' 

w he re K = [ [lJ 'l ] ] . 

Hence 

When (8) is applied to (7) we obtain, after a simple rearrangement, 

))'l 
1 - 1 + K 

1 + (1 - p:v't" ) p'l 
1 + K . 

Together with (8) this gives 

1 
T)) = 1 + K 

1 - (p. - 1) f''l 
f-t»'l 

1 + (1 - K + 1 ) ptt" 

By using the abbrevtations 

S'tt" = x , 

1 + K = KI and 

vtt _ Z 1 

f-t-z 
1(1-

the partial transmission factors can also be written as 

Tv = 

KI - Z 

+ (1 - z') x 

1 - (~- 1) x 
Kil + (1 -z ') x 

1 

For the total process, superimposed by fi - and)) -pulses, the observed 
count rate r)) is now readily obtained by means of (9 1) and (101) as 

, 1 .!,.' fi + J..!....:..E:.. x) )J 
r V = r T ~ + y T.)} = 1 

KI [1 + (l - Z 1) x] 

since ~ z = V x • 

(8) 

(9) 

(10) 

( 11) 

(9 1
) 

(10 1
) 

(12) 
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Figure 1.- Schematic behaviour of the transmission factors Tf ' Tv 

and Tf)) (for a given non-extended dead time'T ) 

as a function of the oscillator frequencyv • T.he drawing 

aSSl,Jmes x.-J 0.25. 

The ov~rall transmission factor T~)J" i.s,therefore 

r» Kir + (1 - tJ-x)Y 
T - -
~ v - ~ + v - KI (~ +)) } [1 + (1 - z') x] 

Let us briefly discuss the discontinuities of the transmission factors at the 
points where »T is equal to a positive integer k. Since there f.1..- = l, 
we find 

- for l.Vt" = k - (i.e. limit "from the left ll
), 

since then KI = k and Zl = 1: 

Tp = 0, 

TV = l/k and 

T
9

l> = l/(k+x} i 

(13) 

(14) 
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- forV'l=k + (i.e. limit "from the right"), 
since now KI = k+ 1 and Zl = k/(k+ 1): 

as!can be readily verified. Here k = 0 is also allowedj the transmission 
is then given by (1 +x)-l = Â • 

We may conclude from (14) and (15) that the transmission factors vary 
as a function of the pulser frequency )) roughly as sketched in Fig. 1. 
Whereas both Tf and Tv change markedly withl? (and in opposite 
directions), the overall transmission T (JP remains approximately constant 
for a given value KI, at least for f«)J. 

The values of the transmission factors on the left-hand side of the 
discontinuities in Fig. 1 can be easily interpreted. Thus, with q:- = li)), 
for instance, the dead time following a registered )J-event suppresses 
ail p-pulses, but as it stops immediately before the next oscillator pulse 
arrives, this event will be counted too. Hence, this situation leads at 
the same time to a complete extinction of the source pulses (T p = 0) and 
to an assured survival of ail pulser events (T)) = 1). Similar expia nations 
a re va 1 id fo r )J'r = 2, 3, ••• • f 

( 15) 

ln what follows we shall restriCt ourselves mainly to the domain 0 (})'l <: 1, 
i.e. KI = 10 Here the general formulae given above for the transmission 
factors may be simplified to 

1 - z 
1 + (1 - f.i z) x ' 

= l-(I-l--1)x 
T)} 1 + (1 - IL z) x 

1 _ P- xz 
x + z 

1 + (1 - p.-z) x ' 

and 

where we may recall that x = pT and z ='}}T. 

The formulae (16) and (17) are somewhat different from the transmissions 
used previously ([3 -5]). In particular, it can be seen that they are not 
identical for both types of pulses. As the expressions (16) to (18) form the 
basis for ail the subsequent calculations, they are also responsible for 

(16) 

(17) 

(18) 

any difference between the new formulae and the earlier relationships for 
r)) and'l. 

We note in passing that (17) has been used previously to calculate the 
correction factor p.. ([7J ' eq. 9). 
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The next task is to derive an expression which allows the determination of 
the dead time involved, 't", which is still assumed to be non-extended 0 

Starting from (12) and using only directly measurable count rates, 
i oe 0 replacing p by r/(l - r'L), we find 

= K' r +(l-rl'[)')) -I-l-).lor't 

KI [1 - r't" + (1 - Zl) rrrJ 

= K'r+» -(l+p.-)rz 
K'-(J-zorrt 

When written as a power series in 'T' , we obtain (remembering that 
z = )]'t") 

2 
l't" or)) r o (.LV - tt"0 q) (1 +(-L) -r» K'+rK'+)} =0 0 

The solution of this quadratic equation is 

= 
4fL r» 

1 +---= 
(1 + (L )2 

K'(r)) - r) 

r » 

This gives for 0 t.. 'f <11)), the practical range that is of most intere'st 
(and at present the only one where tabulated values for the correction 
factors (L are available)., the formula 

= 1+1L 
2 p- r)) ~ - 1 _ 4 \L 0 r)} 0 r + V - r ))J 

(1 + p- )2 r )} J , 

(19) 

(20) 

(21) . 

which is the .main result of the present study and replaces the approximate 
expre ssion (1) 0 

ln practice, (21) has to be used by iteratiol), using first some approximate 
value·for 1:" when looking up the appr'6priat~ value of fL 0 For the moment, 
a similar problem may also arise for S? ' but this will disappear once the 
new tabulation of P' with rI = ri).! (instead of f') is available 0 

Alternative forms of (21) are known, as e 0 go 

(L - 1 2 (r)) - r) (r)) - V) J- 0 

(2) +/1.------ .(21a) 
r rOV 

The reader will easily verify the identity and perhaps establish other 
useful variantso 

It should be noted that (21) does not reduce to (1) if we put f-l' = 10 ln f~ct, 
the corresponding formula would be wrong, as has been noted before [8 Jo 
The reason is that some of the changes produced by the correction factor !-L 
had been taken into account explicitly in the derivation of (1)0 This can 
be seen by a detailed comparison with [3J and [5J 0 
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4. Discussion 

An obvLous question is to ask how the numerical values of the dead 
time compare when determined according to (1) or (21). Such a comparison 
con be readily made in a simple way. From (12) we get for KI = 1 

r = p+v-f-t-·vx 
)) 1 + (1 - ~. ))"'C)x • 

Since r = 1 ! x ' the insertion of these expressions into (1) leads to 

1: 
o 

= +x [ jl? fi 'J 1 - - + 1 - !-L'x ___ )} 
)J 1 + x 

and hence for the ratio to 

(22) 

with the abbreviations 

fI = ~ /v and 'lI = Z = Y'l . 

This ratio is represented graphicall)' in Fig. 2 for some values of the 
parameter "pl. For the range 1:' 1 ~ 0.35 and for pl L 1 (see Fig. 2a), 
the ratio /("o/'L seldom deviates by more than 10-3 from unit y, and usually 
much less, demonstrating that the simple formula (l)is fully adequate in this 
region. Aiso for values of pl ashigh as 5 the differences are within 1%. 
The situation is quite different for higher values of 'LI, in particular for 
rc- 1'> 0.5, as can be seen from Fig. 2b. The approximation (1) then breaks 
progressive Iy down, eve n for p 1 ~ O. It should be me ntioned, howeve r, 
that cautious users had always refrained from applying the formula in this 
domaine 

ln his i~teresting second paper on the periodic pulse method, Baerg ([5J 1 

eq. 5) suggests a method to compare the "observed" and theoretical 
transmission by forming the quantity 

r)} - r 
R = 

B "V(1-rcr)2 
(23) 

which should have unit value at the oscillator frequencies used to deter
mine rr . His measurements, reported graphically, show that this expectation 
is very weil supported as long as ))i[.( 1/3. For higher frequencies 
- at least for the parameters used - Baergls ratio RB may deviate from unity. 
ln particular, for "»rr) 1/2 it seems to increase very rapidly. The curious 
behaviour of RB has never been fully understood, nor its exact relation 
to the corresponding dead-time measurement. It seems that the new approach 
can shed some 1 ight on this problem too. 
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Figure 2a - Graphjcal représentation of the ratio ~/'l, for tt"1 .( 0.4 

and sorne values of pl. This plot perrnits to deterrnine 

the accuracy of the approxirnate forrnu la (1). 
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Figure 2b - As in Fig. 2a, but for 't 1 > 0.3. Note the different scale 

used for the ordinate. 
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Inserting again the expressions given previously for r'}1 and r into (23), 
we arrive at 

-.f..+)J -~·))x ~ 
= 1 + (1 - p-. )) v)x - T+"""; 

RB x 2 
» (l - T+""";) 

2 
= (f + 1 - ~x) (1 + x) ) 

1 + (1 _ ~'tI)X - fi (1 + x , 

with x = f'r = pl fll. Figure 3 shows the theoretical behaviour of RB for 
values of the parameters corresponding to Baergls experimental conditions 
where p ~ 1 000 s-l and rr ~ 250 tL's, hence x ~ 0.25. We note that 
for a graph like Fig. 3 with x constant, 'rI is the only independent 
variable since pl = xl'!' 1. It is obvious that the experimental findings 
are very weil reproduced, giving thereby additional support to the theory 
as outlined above. For the critical minimum at rr 1 = 0.5 we obtain with 
(24) the value RB = 0.978 while from the plot given in [5J one can read 
RB = 0.977 ~ 0.002*. For «t" 1 = l, RB reaches the value 1 + x. 

5. The situation with an extended dead time 

(24) 

As a matter of fact, the case of an extended dead time 'l" essentially 
was solved several years ago and we have little to add. After determining 
the interval density for the superposition - for details we refer to [9J -
a simple integration gives for the overall losses [10J 

-x O)} fi 1 - T = 1 -e (1 __ ..L.!::..- L). 
e f)) f' + )) 

This implies for the experimental count rate of the superimposed process 

e Î"y = (p +)}) eT f1> = (~'':)j - P )1ft") e -x • 

It has been pointed out by Baerg [5J and by Taylor [11] that this may 
also be written in the form 

r = 0 • (1 -))t"\:") e -x + )) . e -x 
e J) l 

, 

* Note added in proof: Dr. A.P. Baerg informs me that the overshoot 
around 11er 1 ~ 2.8 has weil been seen in his measurements and 
that thére is also very good quantitative agreement, the maximum 
reaching indeed a value ofabout RB = 1.0015. 

(25) 

(26) 

(26a) 
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Figure 3 - Baerg's transmission ratio RB' calculated according ta eq. (24) 

for x = 0.25. There is excellent agreement with the measurements 

reported in [5J • 
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from which one can readily infer the partial transmissions as 

T» 
-x = e , 

-x e and 

valid for an extended dead time in the source-pulser process. Obviously 
(27) holds only for')) <l/tt", whereas Tf = T)) = 0 for )) ~1/'t". 

(27) 

The partial transmission factors can also be easily derived directly, as has 
been done by previous workers. As a result of the periodicity imposed by 
the )}-pulses (which are renewal points [7] ), any interval of length 1/)) 
which starts with a » -event may be taken as characteristic for the whole 
process. Thereby it is immaterial whether the)) -pulse has been registered 
or not as it is invariably followed by a dead time. Whether the next }) -event 
is counted or not (for rc > 1/» there is complete paralysis) depends only 
on the ÇJ -pulses: its survival requires II to be preceded by a gap in the 
original f -series of minimal length 't: , hence 

T v= Prob' (no (> in ~) 
-x = e 

The condition for a ~ -pulse to be counted is twofold: '( should ne ithE1r fa Il 
into the dead time of the)} -pulse (at the beginning of the interval), nor 
should it be too close to a preceding f' -pulse; therefore 

(1 - z) . e -x . 

We note that (25) can also be written in the form 

A schematic plot is given in Fig. 4 and we point out in particular the 
surprisiog fact that T J} is independe'nf'l'o'f the 'frequency of the oscillator 
pulses. A comparison with Fig. 1 is instructive. 

A possible way to determine 't" is offered by the relation [5J 

r lJ - r 
) 

-x 
V = (1 - x • e , 

(25 1
) 

(28) 

from which theroot x - and hence also <L , since 5' is sufficiently weil 
known - can be deduced nume rica Ily. An approximate ana Iytica 1 so 1 ution 
has been suggested recently by Taylor [11] . 
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Figure 4 - Schematic representation of the transmission factors Tp ' 

and Tf 1) for an exte nded dead time 'l as a function of 

the oscillator frequency)1 • (Drawing similar to Fig. 1, 

but for x !:::!.. 1). 

Among the items not treated here there remains the problem of the interval 
between successive registered evants. This distribution might be of interest 
because it is easy to measure with a time-amplitude converter. This interval 
density is likely to be very informative for the type of dead time involved. 
Whereas the case of an exte nded 'l could probably be so Ived a na Iyti ca Ily, 
the non-:extended type does not seem <l2menab1.e to an explkit solution. 

Sorne further consequences as weil as a proposai for a simplified experimental 
arrangement will be described in another report. 

It is a pleasure to acknowledge my indebtedness to sorne Canadian friends 
and colleagues. Abe Baerg (NRC, Ottawa) as weil as Janet Merritt and 
John Taylor (both at AECL, Chalk River) provided me with most useful 
comments on a draft version and their continued interest has been an 
invaluable support and encouragement. 
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