Report BIPM-72/4

A Compilation of Recalibrated α -Particle Energy and Intensity Values

by A. RYTZ

Bureau International des Poids et Mesures

F-92 Sèvres

Introductory remarks

Alpha particle energy values have been compiled many times and by various authors. In most cases, however, such lists suffered from one or several of the following shortcomings:

- Not enough unambiguous results available,
- Adjusted values superseded by new results, soon after publication,
- Adjustments made not stated by the compiler,
- No intensities nor errors given,
- Compilation is part of a large data collection; therefore,
 ∝-energy data not easily enough accessible.

In 1966, the Bureau International des Poids et Mesures (BIPM) started a programme for measuring absolute \propto -energies with the aim of determining accurate values of as many \propto -emitters as possible. To date 22 \propto -emitters (35 energy values) have been measured. During this work an increasing need of an up-to-date compilation of energy and intensity values was felt. We therefore started collecting data and consulting the original papers as far as possible.

The choice of the α -decaying nuclides is somewhat arbitrary. In general, energy values with uncertainties greater than 5 keV have not been considered except in cases where a special interest seemed to justify it. Thus, nuclides with very long partial α -half-lives were rejected. Although half-life and branching ratio seemed to be of some importance, they are given, as a rule, only with two significant figures and without reference. Intensity values are always given in percent of the corresponding α -decay. Separate references for intensity measurements are indicated where necessary. In some cases the arithmetic mean between two or more results was taken. Only such α -groups were included in the table which have a relative intensity of at least 5% or which correspond to ground state transitions. A dotted line between intensity values indicates the existence of intermediate lines weaker than 5%. Much effort was put into the evaluation of what we consider as the most reliable particle energy. Under the column heading " E_{cc} (keV)" we give the value found in the corresponding reference quoted, to which an amount indicated under "corr. (keV)" has been added. This correction is the difference between our value for the "standard used" and the one found in the reference (or guesses from similar measurements by the same author or laboratory). The letters m, s, i behind the reference indicate the method used, magnetic spectrometer, solid state detector, ion chamber, respectively.

Uncertainties indicated under " ΔE_{\propto} " and " ΔI " are as stated by the authors or, between brackets, otherwise guessed. No attempt has been made to find out the precise meaning of the errors, however. Therefore, the figures quoted may be standard errors, probable errors, some multiple of these, a sum of a statistical andanestimated systematic error, etc., or mere guesses.

Most of the references prior to 1967 have been found in LedeC67; the same quotation system has been adopted. For more recent papers Nuclear Data Sheets NDS were consulted, where available.

Since the energies of most of the \propto -emitters used as standards are now known from absolute measurements, there remain only 15 \propto -emitters where no direct calibration based on an absolute value could yet be made.

A	EI	z	T _{1/2}	Branch . ratio	Reference for intensity	Ι _α (%)	ΔI _α (%)	E _∢ (ke∨)	ΔE∝ (keV)	Reference for energy		Standards used	, corr. (keV)
148	Gd	64	84 a					3 185	10	GoloN67 SiiA62	m T	²⁴¹ Am, ²³⁴ U	-
202	At	85	3.0 min	∝/tot=0.12		36 64	2 2	6 230 6 <u>1</u> 36	3 2	HoffR63	m	²⁰³ At, ²⁴² Cm	+ 3 + 3
203	At	85	7.4 min	∝/tot=0.14		100		6 087	2	HoffR63 TreyW67 }	m s	242 _{Cm} 212 ^{Bi}	+ 3 -
204	At	85	9.3 min	≪/tot=0.045	8	100		5 950	3	HoffR63 TreyW67	m s	²⁰³ At, ²⁴² Cm 212 ^{Bi}	+ 3 + 1
205	At	85	26 min	∝⁄tot=0.18	10	100		5 899	4	HoffR63	m	²⁴² Cm	+ 3
208	Po Rn	84 86	2.9 a 23 min	EC/tot=1.8x10 ⁻⁵ &/tot=0.2		100 100		5 118 6 148	5 4	TielE67 MomF55	s i	239 210 211 Pu, 210 Po At, Po	- + 7
209	Po At Rn	84 85 86	102 a 5.4 h 30 min	EC/tot=0.0026 ∝/tot=0.05 ∝/tot=0.17	AsaF51;HageG66s	99.3 (100) 100		4 884 5 648 6 044	5 5 10	AsaF51 HumJ56,StonA56 MomF55	m m i	210 210 ^{Po} 211 ^{Po} 211 _{At} , 210 _{Po}	+ 7 + 6 + 7
210	Bi	83	5 d	$\alpha/\beta=1.3\times10^{-6}$		40		4 686	(3)	WaleR59	m	210 _{Po}	-
	Bi ^m	83	2.6×10 ⁶ a			60 58 36	1	4 649 4 959 4 922	(3) 5 5	KorG62	i	²³⁴ U	- + 6 + 6
	Po At	84 85	138 d 8.3 h	≪∕tot=0.0017	71	6 100 32 31	0.5	4 574 5 304.6 5 526 5 444	5 0.6 (5) (5)	RytA61 HoffR53	m m	abs 210 _{Po}	+ 7 + 7 + 7
	Rn	86	2.4 h	≪/tot=0.96		37 100		5 362 6 044	(5)	MomF	m	211 _{At}	+ / + 7
211	Bi	83	2.2 min	β/tot=0.0027	GiaM62, WaleR62	a 84.1	0.1	6 623.1	0.6	GrennB71	m	abs	-
	Ро	84	0.56 s	r	WaleR62a	15.9 99	0.1 (2)	6 278.4 7 450.6	0.7	RytA61 WaleR62a ValliK70	m m s	(abs) ∝o 215po 215Po 215Po	+1.2 +2.3 +2.6
	Po ^m	84	25 s			7.04	0.14	8 875	10	Perlm162	s	Po	+ 5
	At Rn	85 86	7.2 h 15 h	ಡ∕tot=0.4 ⊄⁄tot=0.26		91 100 33.5 64.5	(3)	5 869 5 854 5 786	3 3 3	HoffR53 MomF55	m m	241 218 _{Po} ,210 _{Po} 211 _{At}	+ 7 + 7 + 7 + 7

A	EI	z	T _{1/2}	Branch. ratio	Reference for intensity	I _X (%)	∆I _∝ (%)	E∝ (ke∨)	ΔE_{α} (keV)	Reference for energy	Standards used	corr. (keV)
212	Bi	83	61 min	≪/tot=0.38	RytA51	27.2 69.9	(0.1) (0.1)	6 090.06 6 050.77	0.08	GrennB69 GrennB71 m	abs	
212	Po	84	0.3µs	long range	LeanC65 m LeanC65 LeanC65	100 0.016 0.001 0.003	4	8 784.30 10 554 10 436 9 503	0.07 2 4 4	GrennB71,RytA72m GrennB70m LeanC65m LeanC65	abs abs 1.r. 1 1.r. 1	- - + 4 + 4
	Po [™] Rn Fr	84 86 87	45 s 23 min 19 min	∝/tot=0.44	a R	97 100 21 23 12 40	2 2 1 4	11 660 6 271 6 407 6 383 6 338 6 261	20 5 3 3 3 3	Perlm162 s MomF55 m ValliK65 s	1.r. 211 _{A†} 211 _{Bi} , 212 _{Bi}	+ 10 + 7 - - -
213	Bi	83	47 min	≪/tot=0.022	61	93 7	5 1.5	5 869 5 549	10 10	ValliK64 s	210 _{Po} ,212 _{Bi}	-
214	Po Bi	84 83	4.2 μs 20 min	∝/tot=2.1×10 ⁻⁴		39.2 53.9	0.3	8 376 5 518 5 454 5 274	5 (3) (3)	ValliK64 s WaleR60 m	210 _{Po} , 212 _{Bi} , 218 _{Po}	- 1 + 6 +6
	Po	84	0.16 ms	long range		100 ≰2×10 ⁻⁵	0.1	7 687.09 14 lines	0.06 6 to 10	GrennB71 m LeanC65 m	abs 214 _{Po ∝o}	-
215	Ро	84	1.8 ms			100		7 386.4	0.8	GrennB71 m	abs	-
216	Po	84	0.15 s			100		6 778.5	0.5	GrennB71 m	abs	-
217	At	85	32 ms	β/tot < 10 ⁻³	3	≈100		7 068	5	ValliK64) s LeanC695 m	212 212 219 ^{Bi} , 214 ^{Rn} 214 ^{Po}	- + 1.3 + 7
218	Rn Po At	84 85	0.54 ms 3.0 min 2 s	$\beta / = 1.9 \times 10^{-4}$	R	100 94 6		6 002.55 6 698 6 653	4 0.09 3 5	GrennB71 m WaleR59a m	abs 218 _{Po} 224 _p 218 _p	+ 0.5
219	Rn Rn	86 86	30 ms 4 s	• "	WaleR62 a	100 81 11.5 7.5	1 0.5 0.5	7 132 6 819.29 6 552.6 6 425.6	5 0.27 1.0 1.0	AsaF56 m GrennB71 m RytA61 m RytA61 m	abs (abs) _{Xo}	+ 2.0
220	Rn	86	55 s	4.		100		6 288.29	0.10	GrennB71 m	abs	-

A	EI	z	T 1/2	Branch. ratio	Reference for intensity	Ια (%)	∆1 _∝ (%)	E _≪ (ke∨)	ΔE_{α} (keV)	Reference for energy	Standards used	cðrr. (keV)
221	Fr	87	4.8 min	β /tot < 10 ⁻³	LeanC69	$\frac{83.4}{15.1}$	0.8 0.2	6 340.6 6 126	1.5 2	LeanC69, WaleR62)m VorA60 i ValliK64	224 _{Ra} , 216 _{Po} 216 _{Po} , 224 _{Ra} , 228 _{Th} 212 _{Bi} , 210 _{Po}	+ 1.6
	Ra	88	30 s			30 20 34 8	2 2 2 1	6 758 6 665 6 610 6 588	5 5 5 5	RuiC61 m	226 _{Th} , 222 _{Ra}	+ 4 - - -
222	Rn Ra	86 88	3.8 d 38 s			≈100 95		5 489.66 6 556	0.30 5	GrennB71 m AsaF56 m	abs 224 _{Ra} ,218 _{Po}	_ + 5
223	Ra	88	11 d 2.2 min	≪/tot=0.99	WaleR62 a m	0.9 9.1 53.7 26.0 9.1 31.8	0.2 1.1 0.5 0.2 3.0	5 872 5 747.2 5 716.42 5 606.92 5 539.8 6 662	2 0.4 0.29 0.30 (0.4) 1	WaleR62 a m GrennB71 m GrennB71 GrennB71 GrennB71, WaleR62 c LeanC69 m	(²¹¹ Bi), ∝ ₁₅₉ abs 211 _{Bi} ∝159	+ 2.0 - - + 2.0 + 1.2
						44.6 13.7	4.0 1.0	6 647 6 564	1 1			+ 1.2
224	Ra Ac	88 89	3.6 d 2.9 h	≪∕tot=0.10	WaleR62 m	$94.0 \\ 5.5 \\ 20.4 \\ 11.9 \\ 25.6 \\ 21.9 \\ 6.7$	(0.5)	5 685.56 5 448.8 6 210.6 6 203.8 6 138.5 6 056.6 6 000.4	0.15 0.5 0.7 0.7 0.7 0.7 1.4	GrennB71 m BastG62 m LeanC69 m	abs (²²³ Ra); ∝ _o 212 _{Bi} ;224 _{Ra} ,214 _{Po}	+ 1.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6
225	Ac Th	89 90	10 d 8.0 min	≪/tot ≈ 0.9	BastG67 m	$50.6 \\ 24.3 \\ 10.1 \\ 9 \\ 7 \\ -14 \\ 12 \\ 12 \\ 12 \\ 14 \\ 12 \\ 12 \\ 14 \\ 12 \\ 14 \\ 12 \\ 14 \\ 14$	(0.1) (0.1) (0.2) 1 1 1	5 830 5 794 5 732 6 798 6 744 6 501	2 3 2 5 5 3	BastG67 m ValliK64 s RuiC61 m	224 _{Ra} 210 ^{Ra} ,212 _{Bi} 222 _{Ra} ,226 _{Th}	+ 1.6 - + 5 + 5 + 5 + 5
226	Ra Th	88 90	1.6x10 ³ a 31 min	5	WaleR59 a	43 15 94.6 5.4 79 19	2 1 0.1 (1)	6 4/8 6 441 4 784.50 4 601.9 6 335 6 225	3 0.25 0.5 (5)	GrennB71 m WaleR59 a m AsaF56 m	abs (²¹⁰ Po); ∝ 218Po, 224Ra	+ 5 - + 2.5 + 5 -

Α
227
228
229

							I	[[
A	EI	Z	^T 1/2	Branch. ratio	Reference for intensity	l∝ (%)	∆l _∝ (%)	E∝ (keV)	∆E∝ (keV)	Reference for energy		Standards used	corr. (keV)
230	Th Pa	90 91	7.7×10 ⁴ a 17 d	≪/tot=3.2×10 ⁻⁵	RosS48 m RosS54 m	76 24 23 15 18 13 17	5 5 3 3 3	4 686.5 4 620.0 5 344.4 5 339.4 5 325.9 5 311.7 5 300.2	1.5 1.5 0.7 1.0 0.7 0.7 0.7	BastG66 BastG66	S S	²²⁶ Ra 222 _{Rn} , ²²⁴ Ra	+ 2.5 + 2.5 + 1.3 + 1.3 + 1.3 + 1.3 + 1.3 + 1.3
	U	92	21 d			67.5 31.9	0.5	5 888.0 5 817.2	0.7	BastG66	s	222 _{Rn} , 224 _{Ra}	+ 1.1 + 1.1
231	Pa	91	3.2×10 ⁴ a		BaranS61 m	11.0 22:5 <u>25.4</u> <u>22.8</u> 8.4		$5 058.2 \\ \begin{cases} 5 031.5 \\ 29.0 \\ 5 013.4 \\ 4 951.0 \\ 4 737.0 \end{cases}$	1.0	Baran S68	m	240 Pu	+ 0.7 + 0.7 + 0.7 + 0.7 + 0.7
232	υ	92	72 a		AsaF55 m	68 32		5 320.36 5 263.56	0.09 0.13	GorD 72	m	abs abs	-
233	υ	92	1.6×10 ⁵ a	9 - 3	BaranS66 m	84 .4 13 .2		4 824.7 4 784.0	1.0 1.0	BaranS66 BaranS68	m m	240 240 ^{Pu} Pu	+ 0.7 + 0.7
234	U Pu	92 94	2.5×10 ⁵ a 9 h	≪/tot=0.06	BaranS60 m	72.5 27.5 68 32	3 1.5	4 774 4 722 6 202 6 151	1	GoldiL55} Har∨B57 ∫ HoffR60	m i m	210 _{Po} 226 _{Ra} 220 _{Rn}	+ 6.2 + 5.5 + 6.3 + 6.3
235	υ	92	7.1×10 ⁸ a			<u>4.6</u> 57		4 598 4 402	2	VorA60 BaranS60}	i m	^{234,236} U ²³⁴ U	+ 7 + 6
	Νp	93	410 d	∝⁄tot=1.6×10 ⁻⁵		$ \begin{bmatrix} 18 \\ -53 \\ 24 \\ -6 \\ -11.5 \end{bmatrix} $	0.2 10 8 0.5	4 372 5 097 5 014 4 996 4 986 4 915	3 2 4 2 2	BrowE69	S	²³⁷ Np (?)	+ 0 - - - -

1		F			1				1		1	
A	EI	z	^T 1/2	Branch. ratio	Reference for intensity	Ι _α (%)	∆l∝ (%)	E∝ (ke∨)	∆E∝ (keV)	Reference for energy	Standards used	corr. (keV)
236	U	92	2.4×10 ⁷ a			74		4 494	3	KomA60 i	²³⁴ U	+ 6
	Ρυ	94	2.8 a			26 72.0 28.0	0.5	4 449 5 768 5 722		HumJ56 } m BaranS67 } m	220,224 242 _{Cm}	+ 6 + 5 + 1
237	Np	93	2.1×10 ⁶ a		BrowE67 s	2.6 48 31	0.2 9 9	4 872 4 788 4 771	3 2 5	BaranS61a, BaranS68, BrowE67 s	240 _{Pu} ^{≪87} ^{≪87}	+ 1 + 0.7 + 7
238	U Pu	92 94	4.5×10 ⁹ a		KocG59a i KondL57 m	6.5 77 23 71.1	4	4 640 4 197 4 150 5 499.21	2 5 (10) 0,20	BrowE67 s VorA60 i HarvB57 i GrennB71 m	⁴⁸⁷ 224 _{Ra} , 228 _{Th} BrigG54 abs	+ 7 + 2 + 5 -
239	Pu	94	2.4×10 ⁴ a		GoldiL55, DzhB61,	28.7 72.6	1.2	5 456.5 5 156.3	0.4 0.5	LeanC62 } m	abs 212 240 ^B i	- + 0.6
	Am	95	12 h	≪∕tot=5×10 ⁻⁵	Baran568	16.3 11.1 0.33 83.7 13.75	0.5 0.5 0.02 0.4 0.07	5 143.8 5 105.9 5 825 5 776 5 734	0.6 0.6 4 2 2	BaranS68 J m GorD71 m	241 _{Am}	+ 0.7 - 0.3 - 0.3 - 0.3
240	Pu Cm	94 96	6.5×10 ³ a	EC/tot ≤0.005	GoldiL55, AsaF52m KondL56 m BaranS66 a m	75.5 24.5 71.1	0.5 0.5 (1)	5 168.38 5 123.45 6 290.8	0.09 0.20 0.6	GorD72 n BaranS71 n	abs abs 240 _{Pu}	- - + 0.7
241	Pu	94	15 a	\propto /tot=2.3×10 ⁻⁵	Ahm168 s	28.9	(1)	6 248.0 {5 056	0.6 5	Ahm168 s	∝ ₁₆₂	+ 0.7
	Am	95	433 a	2	MicW65 s AsaF53, GoldiL55, m RosS57, BaranS64 m	83.2 12.1 0.36 85.2 12.8	0.5 0.2 0.05 0.5 0.5	(5 043 4 896.8 4 853.8 5 545 5 485.74 5 442.98	3 1.2 1.2 1 0.12 0.13	BaranS68, n Ahml68 s BaranS64,GoldiL55 GrennB71 n GrennB71 n	$ \begin{array}{c} 240 \\ 240 \\ P_{U} \\ m \propto_{61} \\ a \ abs \\ a \ abs \end{array} $	+ 0.7 + 0.9
	Cm	96	36 d	≪/tot=0.01	BaranS66a m	0.6 71.5 16.3 11.5		6 081 5 939.3 5 927 5 885.0	(1) 0.6 (1) 0.6	BaranS66a n BaranS71. n BaranS66a n BaranS71 n	242 _{Cm} 240 _{Pu} 242 _{Cm} 242 _{Cm} 240 _{Pu}	+ 0.8 + 0.7 + 0.8 + 0.7

Α	E1	Z	$T_{1/2}$	Branch.	Reference	Iα	ΔI_{α}	EX	ΔE_{α}	Reference		Standards ***	corr.
			./=	ratio	for intensity	(%)	(%)	(keV)	(keV)	for energy		used	(keV)
242	Pu	94	3.9×10^{5} a		HumJ56, KondL56m	76		4 900.7	1.2	Baran 568	m	240 Pu	+ 0.7
						24		4 856.4	1.2				+ 0.7
	Cm	96	163 d		AsaF53a;KondL58m	73.9	0.3	6 112.92	0.08	GrennB71	m	abs	
					DzhB63, BaranS66bm	26.1	0.3	6 069.63	0.12	GrennB71	m	abs	-
213	۸m	95	7.4×10^{3}		BaranShi	0.16		5 340		StonESS Hum ISA	-	241	+ 0 7
240		/5	7.4X10 U			87.9	0.3	5 276	1	Baran S68	m	240 ²	+0.7
			-	а		10.6	0.3	5 234	î	BaranS64	m	241 Am	- 0.3
	Cm	96	30 a	$\alpha/tot=0.997$	BaranS66b m	1.5		6 068	(2)	BaranS66b	m	x 201	+0.8
				,		5.6		5 994	(2)	- and the bob		.200	
						73.5	(0.5)	5 785.2	1.0	Baran S71	m	240 Pu	+ 0.7
						10.6		5 742.3	1.0			001	
	Bk	97	4.6 h	α /tot=1.5x10 ⁻³	Ahml66 s	15.4		6 758		Ahm166	s	²²⁶ Th, ²⁴⁴ Cm	-
						12.5		6 718				-	
						25.6		6 574		28			-
						19.4		6 542		2			-
						6.9		6 502					-
						13.6		6 2 1 0					-
244	Cm	96	18 a		HumJ56, DzhB63 m	76.4	(0.2)	5 804.96	0.05	GrennB71	m	abs	- 1
					BaranS66b m	23.6	(0.2)	5 762.835	0.030	GrennB71	m	abs	-
0.45	C	01	0 7 103			10 5		5 522		Paran SAAh	-	2	_
245	Cm	70	0.7X10 a			87 6		5 3 5 9		baransoon	m	•	_
	BL	07	5 4	$\alpha/_{tot=1} + 1 \times 10^{-4}$	Abm166 c	16 5	0.5	6 3 5 8		Abm166		244 m 226 Th	
	DK	11	54	~/101-1.1X10	AIIII100 3	15.0	0.5	6 317		Allinoo	3		- 1
						19.0	0.5	6 153					-
					84	14.8	0.5	6 124					-
					· · · · ·	5.6	0.3	6 087					-
						21.9	0.5	5 889					1 - 1
244	C	04	5 103			70		5 386	(2)	Bolol 63 Barans 66	Wm	238 P. 240 P. 244	-
246	Cm	90	SXIU a		3	21		5 3 4 3	(2)	Aca E60a	Em	243 Am X ==	+ 4
	C 1	00	24 h		Hum 156 Eric 163 c	78	(0 5)	6 758	(5)	Hum 156)		218 Rn 75	+ 5
	Cr	70	30 N	0	TUMJJO, THEADS S	22	(0.5)	6 717	(5)	FrieA63	s	×.	
			7			LL	(0.0)	0 / 1/	(0)		Č.	242	
247	Cm	96	1.6x10′a			13.8	0.7	5 266	4	FieP71	S	Pu	+ 1
						5.7	0.5	5 211	4	7			
						/1.0	1.0	4 868	4				TI
		× 1											

				ſ				İ		1	1		0	e
A	Εl	Z	^T 1/2	Branch. ratio	Reference for intensity		I∝ (%)	∆I∡ (%)	E∝ (keV)	∆E∝ (keV)	Reference for energy		Standards used	corr. (keV
248	Cm	96	3.7×10 ⁵ a	∝/tot=0.89			82 18	(1)	5 078 5 035	(3)	HulE61 SchuR67	m s	246 240 ^C m Pu	+ 4 + 8
249	Bk	97	314 d	∝/tot=2.2×10 ⁻⁵	Ahm166	m	6.7 69.2	0.3 1.5	5 437.3 5 416.8	1.0	BaranS71	m	²⁴² Cm	-
	Cf	98	352 a		Ahm166	s	18.4 -2.4 -82.6	0.5 0.1 0.3	5 389.9 6 194.0 5 813.5	1.0 0.7 1.0	Baran S71	m	²⁴² Cm	
250	Cf	98	13 a		AsaF55a	m	83 1 <i>7</i>		6 030.8 5 989.1	0.6	BaranS71	m	²⁴² Cm [.]	-
251	Cf	98	898 a	*	ChetA68 BrowE69	s s	2.7 12.0 27.4 34.8	0.3 0.5 1.0 1.0	6 074 6 014 5 848 5 680.3	3 3 3 1.0	ChetA68) BrowE69 GrouCR66 BaranS71	s s s m	²⁵² Cf 240 ^{Pu} 249 ^{Cf} 242 ^{Cf}	+ 7 + 8 + 7 -
252	Cf	98	2.6 a	∝/tot=0.97	AsaF55a	m	84.3 15.5		6 118.3 6 075.7	0.5	Baran S 7 1	m	²⁴² Cm	-
	Es	99	≈140 d	β/tot < 0.02			84.7 13.0		6 639 6 576	5 10	MHarW65	5	²³³ Es, ²³⁴ Es	-
253	Es	99	20 d		Asa F60	m	<u>90</u> 6.6		6 632.73 6 592	0.05	GrennB71 AsaF60	m m	abs	-
254	Es	99	2.8×10 ² d	β/tot < 0.01	MHarW65	s	0.005		6 516 6 428.8	10 1.5	MHarW65 BaranS71	s m	242 ⁸⁶	- 8
	Fm	100	3.2 h		AsaF55b	m	85 15		7 192 7 150	5	AsaF64	m	²⁵³ Es	-
255	Es	99	40 d	≪/tot=0.085	FielP67	s	87.7 9.8		6 299.5 6 261	1.5 (5)	BaranS71) FielP67	m s	²⁴² Cm	- 6
	Fm	100	20 ³ h		Ahm171	s	$ \begin{array}{r} 0.08 \\ -93.3 \\ -5.2 \end{array} $	0.01 0.3 0.1	7 119 7 015.8 6 957	4 1.8 3	AsaF64 BaranS71 AsaF64	m m m	$233 E_s$ $253 E_s$ $\propto 107$	- 3 + 1 - 3
257	Fm	100	80 d		с. ⁷		_ <u>0.4</u> _ 94	0.2 1	6 750 6 519	(10) 2	AsaF67	i,s	253 _{Es}	-
240	Am	95	51 h	∝/tot=1.9x10 ⁻⁶	- 0		86.8 12.0	1.0 0.4	5 378* 5 337	1 2	GorD70	S	241 _{Am} ,240 _{Pu}	- ²⁰
*	nak	hly	not to arous	detato	1									

REFERENCES

Α

Ahm166	1. Ahmad, Ph. D. Thesis, University of California Radiation
Ahm168	I. Ahmad, A.M. Friedman, and J.P. Unik, Nuclear Physics
Ahm171	1. Ahmad, F.T. Porter, M.S. Freedman, R.F. Barnes, R.K. Sjoblom, F. Wagner, Jr., J. Milsted, and P.R. Fields,
	Phys. Rev. C 3, 390 (1971)
AsaF51	F. Asaro and \overline{W} . Heimann, unpublished information (1951)
AsaE52	E. Asaro and L. Perlman. Phys. Rev. 88, 828 (1952)
AsaE53	E. Asgro. E. Stephens ¹ and L. Perlman, Phys. Rev. 92, 1 495 (1953)
AsaF53a	E. Asgro. S.G. Thompson, and L. Perlman, Phys. Rev. 92.
, tour oou	694 (1953)
Asa F55	F. Asaro and I. Perlman, Phys. Rev. 99, 37 (1955)
AsaF55a	F. Asaro and I. Perlman, Phys. Rev. 100, 137 (1955)
AsaF55b	F. Asaro, F.S. Stephens, Jr., S.G. Thompson, and I. Perlman, Phys. Rev. 98, 19 (1955)
AsaF56	F. Asaro and I. Perlman, Phys. Rev. 104, 91 (1956)
Asa F60	F. Asaro, S.G. Thompson, F.S. Stephens, and I. Perlman,
	Univ. Calif. Rad. Lab. Report UCRL-9382 (1960); Proc. of the
	International Conference on Nuclear Structure at Kingston,
	Ontario 1960, Univ. of Toronto Press, p. 581
Asa F60b	F. Asaro and I. Perlman, unpublished results (1960) reported
	in HydE64
AsaF64	F. Asaro, S. Bjørnholm, and I. Perlman, Phys. Rev. <u>133</u> , B291 (1964)
AsaF67	F. Asaro and I. Perlman, Phys. Rev. 158, 1073 (1967)

В

BaranS60	S.A. Baranov, A.G. Zelenkov, and V.M. Kulakov, Izv. Akad.
	Nauk SSSR, Ser. Fiz. 24, 1035 (1960); Bull. Acad. Sci.
	USSR, Phys. Ser. 24, 1045 (1960)
Baran S61	S.A. Baranov, V.M. Kulakov, P.S. Samoilov, A.G. Zelenkov,
	Yu. F. Rodionov, and S.V. Pirozhkov, Zhur. Eksptl. i Teoret.
	Fiz. 41, 1475 (1961); Soviet Phys. JETP 14, 1053 (1962)
BaranS64	S.A. Baranov, V.M. Kulakov, and V.M. Shatinsky, Zhur.
,	Eksptl. i Teoret. Fiz. 45, 1811 (1963), also erratum: 46
	(Feb. 1964); Soviet Phys. JETP 18, 1241 (1964), also erratum:
	18, 1245 (1964); Nucl. Phys. 56, 252 (1964)
BaranS66	S.A. Baranov, M.K. Gadjiev, V.M. Kulakov, and V.M. Shatinsky,
	Atomic Energy Institute I.V. Kurtchatov, IAE-1081 (1966)

11

Baran S66a	S.A. Baranov, I.G. Aliev, and L.V. Tchistiakov, Atomic
	Energy Institute I.V. Kurtchatov, IAE–1082 (1966)
Baran S66b	S.A. Baranov, Yu.F. Rodionov, V.M. Kulakov, and V.M. Shatinsky,
	Atomic Energy Institute 1.V. Kurtchatov, IAE-1097 (1966)
BaranS67	S.A. Baranov,
	Yadernaya Fiz. 5, 241 (1967); J. Nucl. Phys. (USSR) 5, 169 (1967)
BaranS68	S.A. Baranov, V.M. Kulakov, and V.M. Shatinsky, Yadernaya
	Fiz. 7, 727 (1968), J. Nucl. Phys. (USSR), (1968)
Baran S 7 1	S.A. Baranov, V.M. Shatinsky, and V.M. Kulakov, Yadern.
	Fiz. 14, 1101 (1971)
BastG62	G. Bastin-Scoffier, C.R. Acad. Sci. Paris 254, 3854 (1962)
BastG64	G. Bastin–Scoffier, C.F. Leang, and R.J. Walen, C.R. Acad.
	Sci. Paris 258, 6397 (1964)
BastG65	G. Bastin, Ch.F. Leang, and R.J. Walen, private comm.(1965), see Lede
Bast G66	G. Bastin, Ch.F. Leang, and R.J. Walen, C.R. Acad. Sci. C67
	Paris 262B, 89 (1966)
BastG67	G. Bastin-Scoffier, C.R. Acad.Sci. Paris 266B, 629 (1967)
BeloL63	L.M. Belov, B.S. Dzhelepov, R.B. Ivanov, A.S. Krivokhatsky,
	V.G. Nedovessov, and V.P. Chechev, Radiokhimiya 5, 394
	(1963); Soviet Radiochemistry 5, 362 (1963)
BrigG54	G.H. Briggs, Revs Mod. Phys. 26, 1 (1954)
BrowE67	E. Browne and F. Asaro, University of California Radiation Lab.
	Report UCRL-17 989 (1967)
BrowE69	E. Browne and F. Asaro, University of California Radiation
	Lab. Report UCRL-19 530(1969)

С

ChetA68 A. Chetham-Strode, Jr., R.J. Silva, J.R. Tarrant, and I.R. Williams, Nucl. Phys. A 107, 645 (1968)

D

DzhBól
B.S. Dzhelepov, R.B. Ivanov, and V.G. Nedovessov, Zhur. Eksptl. i Teoret. Fiz. <u>41</u>, 1725 (1961); Soviet Phys. JETP <u>14</u>, 1227,(1962)
DzhB63
B.S. Dzhelepov, R.B. Ivanov, V.G. Nedovessov, and V.P. Chechev, Zhur. Eksptl. i Teoret. Fiz. <u>45</u>, 1360 (1963); Soviet Phys. JETP <u>18</u>, 937 (1964)
DzhB67
B.S. Dzhelepov, R.B. Ivanov, M.A. Mikhailovak, L.N. Moskvin, O.M. Nazarenko, and V.F. Rodionov, Izv. Akad. Nauk SSSR, Ser. Fiz. <u>31</u>, 568 (1967) Bull. Acad. Sci. USSR, Phys. Ser. <u>31</u>, 563 (1968)

FrieA63	A.M. Friedman and J. Milsted, Phys. Rev. 131, 772 (1963)
FieP67	P.R. Fields, H. Diamond, A.M. Friedman, J. Milsted,
	J.L. Lerner, R.F. Barnes, R.K. Sjoblom, D.N. Metta, and
	E.P. Horwitz, Nucl. Phys. A 96, 440 (1967)
FieP71	P.R. Fields, I. Ahmad, A.M. Friedman, J. Lerner, and
	D.N. Metta, Nucl. Phys. A 160, 460 (1971)

G

- GiaM62 M. Giannini, D. Prosperi, and S. Sciutti, Nuovo Cim. <u>25</u>, 1314 (1962)
- GoldiL55 L.L. Gol'din, E.F. Tret'yakov, and G.I. Novikova, Conf. Acad. Sci. USSR on Peaceful Uses of Atomic Energy, Phys. Math. Sci., p. 226 (July, 1955); Consultants Bureau Translation p. 167,UCRL Translation 242
- GoldiL59 L.L. Gol'din, G.I. Novikova, N.L. Pirogova, and E.F. Tret'yakov, Zhur. Eksptl. i Teoret. Fiz. <u>37</u>, 1155 (1959); Soviet Phys. JETP 10, 822 (1960)
- GoloN67 N.A. Golovkov, K. Ya. Gromov, N.A. Lebedev, B. Makhmudov, A.S. Rudnev, and V.G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1618 (1967); Bull. Acad. Sci. USSR, Phys. Ser. <u>31</u>, (1968)
- GorD70 D.J. Gorman and F. Asaro, Phys. Rev. C 2, 2406 (1970)
- GorD71 D.J. Gorman and F. Asaro, Phys. Rev. C 3, 746 (1971)
- GorD72 D.J. Gorman, A. Rytz, and F. Asaro, to be published in C.R. (1972)
- GrennB69 B. Grennberg and A. Rytz, C.R. Acad. Sci. Paris, 269B, 652 (1969)
- GrennB70 B. Grennberg, B.I.P.M., unpublished results (1970)
- GrennB71 B. Grennberg and A. Rytz, Metrologia 7, 65 (1971)
- GrouCR66 Combined Radiochemistry Group, University of California Radiation Lab. Report UCRL-14 500 (1966)

Н

HageG66 G.R. Hagee, R.C. Lange, and J.T. McCarthy, Nucl. Phys. 84, 62 (1966) HarvB57 B.G. Harvey, H.G. Jackson, T.A. Eastwood, and G.C. Hanna, Can. J. Phys. 35, 258 (1957) HillM58 M.W. Hill, Thesis, University of California Radiation Lab. Report UCRL-8423 (1958) HoffR53 R.W. Hoff. Thesis, University of California Radiation Lab. Report UCRL-2325 (1953) HoffR60 R.W. Hoff, F. Asaro, and I. Perlman, unpublished results (1960), reported in HydE64 HoffR63 R.W. Hoff, F. Asaro, and I. Perlman, J. Inorg. Nucl. Chem. 25, 1303 (1963)

- HulE61 E.K. Hulet and F. Asaro, unpublished data (1961), reported in HydE64
 HumJ56 J.P. Hummel, Thesis, University of California Radiation Lab. Report UCRL-3456 (1956)
- HydE64 E.K. Hyde, I. Perlman, and G.T. Seaborg, The Nuclear Properties of the Heavy Elements, Vol. II: Detailed Radioactivity Properties, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1964)

К

- KocG59 G.E. Kocharov, A.P. Komar, G.A. Korolev, I.N. Marov, and Yu.A. Surkov, Izv. Akad. Nauk. SSSR, Ser. Fiz. 23, 855 (1959); Bull. Acad. Sci. USSR, Phys. Ser. 23, 847 (1959)
 KocG59a G.E. Kocharov, A.P. Komar, and G.A. Korolev, Zhur. Eksptl.
 - i Teoret. Fiz. <u>36</u>, 68 (1959); Soviet Phys. JETP <u>9</u>, 48 (1959)
- KomA60 A.P. Komar, G.A. Korolev, and G.E. Kocharov, Zhur. Eksptl. i Teoret. Fiz. 38, 1436 (1960); Soviet Phys. JETP 11, 1038 (1960)
- KondL56 L.N. Kondrat'ev, G.N. Novikova, lu.P. Sobolev, and L.L. Gol'din, Zhur. Eksptl. i Teoret.Fiz. <u>31</u>, 771 (1956); Soviet Phys. JETP4, 645 (1957)
- KondL57 L.N. Kondrat'ev, G.I. Novikova, V.B. Dedov, and L.L. Gol'din, Izv. Akad. Nauk SSSR, Ser. Fiz. 21, 907 (1957); Bull. Acad. Sci. USSR, Phys. Ser. 21, 909 (1957)
- KondL58 L.N. Kondrat'ev, V.B. Dedov, and L.L. Gol'din, Izv. Akad. Nauk SSSR, Ser. Fiz. 22, 99 (1958); Bull. Acad. Sci. USSR, Phys. Ser. 22, 97 (1958)
- KorG62 G.A. Korolev and G.E. Kocharov, Izv. Akad. Nauk SSSR, Ser. Fiz. 26, 235 (1962); Bull. Acad. Sci. USSR, Phys. Ser. <u>26</u>, 233 (1962)

L

LeanC62	Ch.F.	Leang,	C.R.	Acad.	Sci.	Paris	255,	3155 ((1962)	
							and the second se			

- LeanC65 Ch.F. Leang, C.R. Acad. Sci. Paris 260, 3037 (1965)
- LeanC69 Ch.F. Leang, Thesis, Acad. Sci., Paris (1969)
- LedeC67 C.M. Lederer, J.M. Hollander, and I. Perlman, Table of Isotopes, sixth edition, John Wiley and Sons, Inc., New York (1967)

Μ

MHarW65	5	W.C. McHarris, Thesis, University of California Radiation Lab.
		Report UCRL-11784 (1965)
MicW65		W. Michaelis, Z. Physik 186, 42 (1965)
MomF55		F.F. Momyer, Jr., F. Asaro, and E.K. Hyde, J. Inorg. Nucl.
	•	Chem. 1, 267 (1955)

14

- NoviG59 G.I. Novikova, E.A. Volkova, L.L. Gol'din, D.M. Ziv, and E.F. Tret'yakov, Zhur.Eksptl. i Teoret. Fiz. <u>37</u>, 928 (1959); Soviet Phys. JETP 10, 663 (1960)
- NDS Nuclear Data Sheets, Natl. Acad. of Sciences-Natl. Research Council; Nuclear Data, Academic Press, New York and London
 - Ρ
- Perlm162 I. Perlman, F. Asaro, A. Ghiorso, A. Larsh, and R. Latimer, Phys. Rev. 127, 917 (1962)

R

- RosS48 S. Rosenblum, M. Valadares, and J. Vial, C.R. Acad. Sci. Paris 227, 1088 (1948)
- RosS54 S. Rosenblum, M. Valadares, J. Blandin-Vial, and R. Bernas, C.R. Acad. Sci. Paris 238, 1496 (1954)
- RosS57 S. Rosenblum, M. Valadares, and J. Milsted, J. Phys. Radium 18, 609 (1957)
- RuiC61 C.P. Ruiz, Thesis, University of California Radiation Lab. Report UCRL-9155 (1961)
- RytA51 A. Rytz, C.R. Acad. Sci. Paris 233, 790 (1951)
- RytA61 A. Rytz, Helv. Phys. Acta 34, 240 (1961); A. Rytz, H.H. Staub, and H. Winkler, Helv. Phys. Acta 34, 960 (1961)
- RytA72 A. Rytz, B. Grennberg, and D.J. Gorman, Proceedings of the 4th Internat. Conf. on Atomic Masses and Fundamental Constants, Teddington, England (1971), in the press
 - S
- SiiA62 A. Siivola, Ann. Acad. Sci. Fennicae, Ser. A, VI, No. 109, 1 (1962); Nucl. Sci. Abstr. 17, No. 21003 (1963)
- StepF55 F. Stephens, J. Hummel, F. Asaro, and I. Perlman, Phys. Rev. 98, 261A (1955)
- StonA56 A.W. Stoner, Thesis, University of California Radiation Lab. Report UCRL-3471 (1956)
- SubV63 V.B. Subrahmanyam, Thesis, University of California Radiation Lab. Report UCRL-11082 (1963)
- SchuR67 R.P. Schuman, IN-1083, p. 43 (1967)

Т

TielE67 E. Tielsch-Cassel, Nucl. Phys. A 100, 425 (1967) TreyW67 W. Treytl and K. Valli, Nucl. Phys. A 97, 405 (1967)

1	6	

ValliK64	K. Valli, Ann. Acad. Sci. Fennicae, Ser. A, VI, No. 165, 1 (1964)
ValliK65	K. Valli and E.K. Hyde, University of California Radiation Lab. Report, 1965, UCRL-16580 (1966)
ValliK70	K. Valli, E.K. Hyde, and J. Borggreen, Phys. Rev. C 1, 2115 (1970)
VorA60	A.A. Vorob'ev, A.P. Komar, and V.A. Korolev, Zhur. Eksptl. i Teoret. Fiz. <u>39</u> , 70 (1960); Soviet Phys. JETP <u>12</u> , 50 (1961)

W

WaleR59	R.J. Walen and G. Bastin-Scoffier, J. Phys. Radium 20, 589 (1959)
WaleR59a	R.J. Walen and G. Bastin-Scoffier, Compt. rend. Congr.
	Intern. Phys. Nucl., Paris (1959), (Dunod, Paris, Crosby-Lockwood,
	London), p. 910
WaleR60	R.J. Walen and G. Bastin-Scoffier, Nucl. Phys. 16, 246 (1960)
WaleR62	R.J. Walen, C.R. Acad. Sci. Paris 255, 1604 (1962)

WaleR62a R.J. Walen, V. Nedovessov, and G. Bastin-Scoffier, Nucl. Phys. <u>35</u>, 232 (1962)