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Some notes on pair statistics 

Jërg W. fv, üller 

1. Introduction 

Let us assume that the parent and the daughter pulses stemming from a two-step 
nuclear decay cannot be readily distinguished, as for example is usually the case 
for beta particle~ and highly converted gamma rays. We then say that a "pair" 
is counted if both the parent and the daughter pulse from a specific decay have 
been registered within a certain measuring time T. Ali other pulses are denoted 
"singles". We assume that the intermediate state has a mean 1 ifetime 'A.- 1 and that 
the detection efficiencies of the courHers are Ep and ê f for the parent and daughter 

pulses, respectively: Dead-time effects will not be taken into aCCount. Our interest 
is focussed on the statistical behaviour of the total process which consists of the 
random superposition of parent and daughter pulses. 

It should be emphasized that this report does not claim to state anything really new. 
It is rather an attempt to derive fully some basic results from a somewhat naive 
point ofview which, however, will prove useful for some developments to be 
described later. For an earlier d'Herent approach compare [1 J. ; 
Most results are defived by completely elementary methods as weil as by using 
integral transforms: the second way is usually much shorter and therefore probably 
easier to overlodk. 

ln order to arrive at the probability distribution for the number k of registered; 
pulses in T, a subdivision into pairs and single pulses is practical, as suggested 
by their different behaviour in time. We therefore write 

k = n 1 + 2 n2 1 (1) 

where n
1 

= number of observed single pulses 

and n2 = " " " pa irs, 

both for a given time interval T. 

n
1 

and n
2 

are random quantities, but the condition (1) restricts their possible 

values for a given k, as can be seen from the follo'win-g simple examples. 
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k n
1 

n
2 

k n 1 

0 0 0 5 

3 
0 5 

2 0 
6 0 

2 0 
2 

3 
4 

3 0 6 

4 0 2 
7 0 

2 1 
2 

4 0 4 

6 

8 

Table 1; Some possible numbers for singles and pairs when the total 
number k is fixed 

The general rule is readily shown to be 

) 0, 2, ••• , 2 [ Ck/2J] for k even 

n
1 = l l, 3, ••• , k Il k odd 

and n
2 = 0, 1, 2, ••• , [ [ k/2] ] , 

where ï [0] l denotes the largest i nteger be Iowa • 
.L... ...J 

n
2 

2 

0 

3 

2 

0 

4 

3 

2 

0 

For the probability of finding exactly k events in T, this yields the basic equation 

K 
V.': (k) = L !l(k -2j)· !2(j) , (2) 

j=O 

with K = - '- k+
2
11l ={ ~ for k even 

- j 1 k
2
-1 Il k odd. 

L ...J 

The problem of finding W(k) is thus reduced to the determination of the probabil ities 
!1 and f 2 for the number of singl e s and pairs. 
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2. Probabilities for singles and pairs 

ln order to arrive at a useful explicit form of (2), the distributions for the single 
and paired events have first to be determined. 

Our aim is to show that for an original sequence of parent decays forming a Poisson 
process, the distributions f

1 
and f

2 
are still Poissonian. 

Let us first consider the effect of the finite efficiencies. For a sufficiently long 

measuring interval (T» )..-1) the survival probabilities Ti are 

- for a pair Tï 2 = Ep 
. 

éd , (3) 

whereas 
- for a single parent 'jï = 1"" (1 E

d
) and r 

p '-p .. .. Il daughter 1T
d 

= Ëd 
. (1 r ) c:.p 

, 

thus 1"-' 

Il 1 = 'iT
p 

+ 1T
d 

= é + Çd - 2 ... . fd c. p p 
(4) 

Howe ve r, an original Poisson proc e ss witr. expectation p-, From which events 
are e lim ina te d at random and independentl:y, re sults in another Poisson process 
'('Iith ne w e xpe ctation 1T~ , where rï is the survival probability. A simple and 
dire ct way to se e this may run as follows. 

ln order to arrive at k remaining pulses, we have to start from j ~ k original 
events which are supposed to be Poisson distributed. Therefore 

where 

;~ 

f(k) = 2 p (.(., (j) • b'ij (j, k) 1 

j=k 

- p-- f..1;1 
p~ (j) = e • Tl is a Poisson distribution with expectation ~ 

(5) 

and lT, (j,k) = (l) . frk • (1 _ü)i-
k 

is a binomial distribution (k = 0, l, "'1 j). 

Inserting into (5) gives 

c.:>c.J fL i k -)i-k f(k) = 2: e -~. (1 ) TI (1 - Il • 1 k 
i=k 1 • 

_ _k ~'X) {J- r+k 
(+k) -11"/ = e rv. ';1 L (1 r = j-k (r+k)! , 

r=O 
r 

e - u., · (/i'fk) k 

"" 
[ (1-'îï)rJ r 

= 
k 1 L r ! r=O 

• (llt'-)k . e(l-1'T>r= 
r-

(lT"/L)k -JJ.., - /1 tL 

= e e . 
k 1 k t 

= p. (k) . (6) 
'lip--
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Thére'fore P(k) is again a Poisson dis~ribution, but now 'with the expectation 'tIt--'" 
where O~ 1'1" ~ 1 • ' . . , ' 

A more elegant way to derive this result would be to consider the pres~. nt situation 
os a special case of a so-called branching process. Then, on the grovndsof 
a general relation [2] , the following equation holds for the respective ,transforms 

P (s) = p rb,,"," (l, s) o. (7) 
- f-l.._ JI J 

Here b'17 (l, k) is a Bernoulli variable with 

b- (1,0) = 1 - fi 
Il 

Applying e.g. ~oplace transforms, we obtain 
~ . . ~ i " ." 

"V " . ' 0 ~ ,..... -s 
brr,'(l,s) = (1 .. ~1) + Il • e 

p (s) 
{-C' 

= exp ~t-L(e -s - 1)} 

and,therefore with (7) 

1(,) = exp lP·ITI-'iI + 'iÎ, e -') 1 JI 
= exp JlI {-J- (e -s - 1)} = ~ (s), 

t - /I~ 
which is identical witn (6) ~ 

3. Distribution of the ' pa ii-s . , . . 

For the pairs, the result (6) cannot be applied directly because for any measuring 
interval of finite length T the probabil ity of finding a real pair depends on its 
location t , with 0 ~ t { T, which may be defined for instance by the arrivai 
time of the parent pulse. Since "earlier" parents have obviously a better chance 
of finding their daughter pulse in th(;l some time interval (and forming thereby 
a pair) thon "Iater" ,pa rents, th~ survival probabïlity for pairs is now a function 
of t. In deriving (6), hawever, it wasessential,to assume that 11 is a constant. 

Therefore, it is probably somewhat surprising that, in spite of ail that, the number 
of pairs in T is still Poisson distributed 011 the same. This fact, as it seems, 
wa s fi rst e xplicitly sta te d by Fogli.o Pa ra e t a l ; [ 1], but sÇ)me readers might 
h~ sito te to a cce pt the ir proof of t h is sta te'men t since a closer look a t the de ve lopme nt 
used (for their type (3) ) revedls that this might have onticipated the solution as 
it corresponds to the differentïal form of a Poisson process. 'V'/e therefore prefer 
to show by means of a very simple argument more clearly the basis of this result, 
which holds quite generally. 

0' 
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Fer this purpose we ima g ine the cQ1J'nt-in,g ioterva l ( f Itp -he subdivide d into l" par ts, 
of e qua l le ngth L1 t = TIN. Let ~ be the mea n, notnbe r of e ve !1ts in T. The n for 
a ny of the resulting pa rti a l inte rvd l ·(~ 1 l). 1:1. t ~' t t n ' L t for t 
(with n = 1,2, ... , N), the stcrthtiH::of the pq reQt rpulse s is c~ ea rly still Poissoni a n 
with mea n m = tL/I =.p ' Li t 1 sa y, where p . is the count ra te of the pa re nt 
puls~ s, We note tha t m is inde pJ nde nt qf the pok tlor t. O n the othe ha nd, 
the surviv a l proba bil ity lT fo r a d çpJghter pulse , f,he parent of ~which ha s been 
obse rved o t t, is cbviously a funct ion of time which de crea se s monotonic a lly with t. 

, 1 1 r, ~ 

The new e xpec te d numbe r of pai!) ; with the pa re,.., t pulses Iyin~ in t ". t+~ t , is now 

il. p.-(t) = m • 'iT(t) = J . TI (t) • .d t f. 

Provided tho t ~ t is' sma ll enough (i . e' , fo ' N >t l), -n:- (t} k a ho.n'Sta nt for a 
given subinte r,vp l a nd the ~istribution of rt- h.e corre sponding pa irs ('f/ith pa re nts 
i n .6. t) Îs still Poissoni a n . 1 

• ' -0 ~ 

b,..\,(,.',;>, \' f ~ ""'lr: " ·1 • 
)) . t l ' 

4. $ums ot Poisson proc e sses 

(8) 

l' 

The tdta l numbe r of pai rs is ma de' up by 0 11 fh i contr'ib'l!Jtiohs from th~ N sub l nte rva ls, 
The y a il form Poisson processes, but with diffe re nt m~ans, It is a we ll-known fa ct, 
howe ve r, th a t CI sutn ,of inc;lepe·rde n~ ~pissoln p cca sses i~ o go iJ"! a f oisson proce ss, 
a s co n eas ily b shown, ei the r directly (see la t e r) or, perhops more conve ni ntly, 
ogoi)1, by the use ef tra nsforms, The, mt!t-l ,tipl <; con\,o, llJ~ion _ 

11 ••• 

of the originals corresponds to the.. ~r9duct 

' v 
_Ptot(s) = PA 1 1 (s) . -vp , {s\· 

u!""-'l .6 ~):- 2 c,' 
, J (5) 

• P Al 
.u. 'N 

= ft exp {~P)~ -nf = exp .{ M(S-l)} 

= ,,"p v'I (~) (9) 

N 
with M = 2. A u.. 

i=l \ 1-

. r 

, . 
The superpdsitÎcjn " thû's'forrh~ a notHe'( pôrsson ~ pro'c e ss l the e xpe cto tion' M -:-of w hioh 
is equal to the sum of the expectations liL , ·of th t'6inponent':pr9cesse'S~ \."ou.r. 

\ l ' 
case this yie Ids for the new me a n with' (8) 

,-- r. 



N 
M = lim :2 ~t-di' ~t) = 

M-?'>~ j=O 

T 

- 1 f with 'iT= T IT(t) dt • 

o 

6 

T 

f . l Iï(t) 

o 
dt = 'jÏ'U" t, , (10) 

This shows that even for the case of a time-dependent survival probability it is still 
permitted to use (6) with'Ït replaced by 'fT • 

ln order to check this important result empirically, a Monte Carlo simulation has 
been performed where the number of pairs in a given time interval T has been 
counted. The result is given in Table 2 and shows indeed a very satisfactory 
agreement with a Poisson distHbution. 

o 

2 

3 

4 

5 

6 

7 

8 

observed: 

h(n
2

) 

478 359 

353 215 

129 770 

31 736 

5911 

879 

119 

10 

1 

expected: 

pf-L'2(n2)' 10 
6 

479 142 

352 533 

129 690 

31 807 

5 851 

861 

106 

11 

Table 2: Empirical frequencies h(n
2

) for n
2 

pairs in T 

(with é
p 

= Ed = 1, T = 1, p=2 and À= 1) 

The empirical mean number of pairs, based on this sample of 10
6 

intervals, is found 
to be 

- -6", 
n
2 

= 10 .L.. n
2 

• h(n
2

) = 0.737:: 0.001 , 

whereas on theoretical grounds one would expect (cf. later eq. 20) 

r -A ~ t-t. 2 = ç - ~ (1 - e ) = 2/ e = 0.736.· (11) . 

, 1 
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It is not difficult to show in a direct way the reproductive property of a Poisson 
distribution with respect to the mean. We may restrict ourselves to the case of 
two compon61nts. 

Let f(k) = p ~ (k) * Pli (k) 
. 1f'"""'2 1 

with 
- /-.Lt IJ.-k 

p f.J.- (k) = e • kT 

Written in full this is equivalent to 

k 
f(k) = ~ p (k-j) • P!L2 (j) 

j=O !L1 

-(~1 +~2) k k- j ~~ t-'- l 
= e 2: {k - iJ ! . "'--

j=O i ! 

However, since 

( V 1 + !--t2)k 
k 

(~) ~~-i . fL~ = :L 
j=O 

1 CL k-j . ~~ = k! L (k-j)! . p \ 1 , 

we obtain immediately 

f(k) 

with 
~3 = f..l1 + /-A-2 ' 

in agreement with (9). 

5. Me a n a nd va ri a nce for the pa irs 
, 

We want to show here how the first two moments Can be obtained directly From 
the distribution. S ince this is a somewhat lengthy calèulôtion; the next section 
will indicate a shortcut to arrive at the same results using integral transforms. 

Since we know that the number of pairs and (by similar arguments) of single pulses 
are Poisson distributed, equation (2) con now be written as 
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k-2 i 
f-L l 
(k -2 j) ! 

, 

where f.t-l and t-L2 are the expectations for the number of singles and pairs 

in T, respectively, 

and K = -rk+l l r 2 . , 
.- -

Another equivalent form would be 

-(~.l.-l + 1-"-2) K 

W(k) = e k! 2: (2j-1)!! (2f.L
2
)i, /-L-~-2i 

j=O 

We first determine the first moment 

ca 00 K 
m (k) = 2 k • W(k) = :2 2: k • P (i) • P (k-2 j) 

1 k=O k=O i=O 2 1 

- u.. 
1 1 

k-2j 
1.1.-1 

. (k-2 n! 

(12) 

S• 1 = 0 f > K h Ince (k-2 j) 1 or j , t e summation over can be extended to infinity. 

Upon reversing the order of the sums we get 

k . ~k-2i 
" \ 1 
L...... (k-2 '1) 1 k=O ' 

With s = k-2 i the second sum is 

u ... s u . r 1 \~ 1 
~ (5+2',) - = u.. • e + 2', 
L- 5 ! \ 1 

1J~1 
• e , 

s 

hence 

ml (k) 

11 2 
' e ) = U,1 + 2 \-l 2 

We have to keep in mind, however, that the means ~1 and ft2 depend on 

the length T of the measuring interval. 

(13) 
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For the second moment (12) gives 

Putting again k-2j = s 1 we have 

k
2 

= s (s - 1) + s (1 + 4j) + 4 j2 1 

and therefore 

s-2 s-1 s 

{
\ t 1· ~ tL1 + 4 ,2 ~ ~· 1 ~ = fJv2 """" + (1 +4 ',) • kL " , ) ••• J \ 1 L (s-2) ! ' -- 1 L (s-1) 1 ~ s ! 

2 r 1 ~1 2 r'~1 
= ~ l' e + (1 +4 j) ' fL1 . e + 4j • e 

or 

Since 4j2 +4j' fL
1 

=4, j(j-1) +4(1 + t-t-
1
)· i 1 

we moy olso Wl"lte 

- F-'2 1. 2 ~~2 2 ~2 2J-
= e L( \..l..l' + . t 1) e + 4 ,-l2 • e + 4 2 (1 + \Jl 1) e 

2 2 
= \.1.- 1 + pJ 1 + 4 !-L 2 + 4 ~ 2 + 4 ~ 1 ~ 2 

= q1.
1 

+ 2 /J...2 )2 + ~1 + 4f.L
2 

This then yields for the variance of k 

2 2 cr (k) = m2 (k) - m 1(k) = P. 1 + 4~ 2 

Actually, the results (13) and (15) for the meon and the variance just reflect 
the simple fact that the total process can be thought of as the superposition of 
two independent Poisson processes, namely for the singles and for the pairs. 

( 14) 

(15) 
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5 ince for the superimposed process, according to (14), 

2 
cr- (k) = ml (k) + 2 (-1-2 ' 

equality of mean and variance is only possible if pairs are absent. In that case 
we have obviously again a simple Poisson process. The experimental value of the 
variance con therefore be used for estimating t-t2 • 

6. Transform for the pair distribution 

Moments of a variable are always simple to determine once the transform 
of the corresponding probabil ity distribution is known. This is what we now try 
to obtain for (2) which con be written symbolically in the form of the convolution 

(2') 

The transform for the singles is straightforward. Using Laplace transforms we obtain 

-sk • e 

For the second factor which describes the pairs we put 

where ~(k) is now the probability distribution for observing exactly k pairs 

(i.e. 2k pulses) in T. Its transform is 

4J ( ) 
= J. t Q 2 (k), s J 

.. ,0 

= :2 Q (k) . 
k=O - 2 

= i t Q 2 (k), 2 s 1 = Q 2 (2 s) 

-s ·2k 
e 

( 16) 

As singles and pairs are described by Foisson distributions with respective means 
~Ll and (.-t2 ' we obtain for the transformed total distribution 

W(s) =t l f 1 (k), s} . ;f [ ~2(2k), s} = ~1 (s) . Q2(2s} 

The moments of k (of order r) are obtoined by differentiation according to 

m (k) 
r 

r ''''' J 

= (_ l ) r . d W(s) 

ds
r 

( 18) 

1 s=O 
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A simple calculction leads to 
,..., 

dy../ -s -2s -s -2s ds- = ~ exp(-~-~2) 0 exp(~l 0 e + tL2 0 e )" (tL, . e +2~2"e ), 

Hence (17) gives now 

and 

in agreement with (13) and (14) 0 

7. The mean rates 

Tre general structure of the superimposed process is now reasonably clear, but 
we ~till ~Qve to det~rmin~ th~ eXRec;fed rn~an rqt~~ tt-l and ~2 for the singles 
~nd the pqirs, respeçtively ~ '. 
~ - . ,- . , . 

For thi5 purpo~e .I~t ~l! c;()nsicter 'th~ J~'rvivql probqbjlity of a pqir wlth parent 'pl/Ise 
ot an Qrbitr!lfY Ipt:qti~H~ t tif an ·~xp.QnentiCf! distribution with mecn distance À-1 
is qssumedfQr the time· I~a ~etwe~~ pdrent a!1d daughfer pulse, the probabll ity 
q(t) for tre clauaht~r .to fatl Iri the so'me measuring interval of duration T as her 
parent is . '. . . 

T 
q(t) = À f e -Î\(x .. t) dx = 1 _ e.-À(T-t) 

t 

The correspondi ng average probabi 1 ity is therefore 

T 
- 1 J 1 -À-T '1 = f q(t) dt = 1 - À T (1 - e ). 

o 
(19) 

For À. T » 1 the effect of the finite intervall'ens.th disappears since then Ci = 1, 
independently of the exact ttme distribution of the daughterso Taking into account 
the finite counter efficiencies, the average survival probability of a pair becomes 

'tf = E E 0'1 2 p d 
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which generalizes (3). With on original rate f for the parent pulses, we therefore 
arrive at an expectation of 

(20) 

for the number of pairs in an interval T. 

As the expectation for the total number of pulses registered in T is given by 

we finally obtain for the mean number of uncorrelated single pulses in the interval T 

~-.V 1 = ~ - 2 ~ 2 = ~ T J E: + E d - 2 S t. d Il -+r (1 - e - À T )ï ~ . (2 1 ) L p p ~ J) 
Putting 

,...... 
~1 = f ' 1/ 1 . T , 

w i t h ~ 1 1 = é p + éd - 2 E- p éd [ 1 - ~ T (1 - e - 1\ T)ï , 

we see that equation (22) reduces to (4) for ).. T » 1 • 

(22) 

If a mean number b of background pulses is registered in T, where cross-over transitions 
and any other non-correlated events are included, this should clearly be added 
to the number tLl of single pulses (and to the total number P"')' 
We note that according to (21) and (20) the mean number of singles or pairs is no longer 
proportional to the length T of the measuring interval. Single pulses and pairs thus 
form what the statisticians coll a non-homogeneous Poisson process or a Poisson 
process with non-stationary increments [3 

Let us recall that ail the above reasonings ossu me the complete absence of dead 
times in the counters. It is not clear at the present time how dead-time effects could 
be taken into account properly in the case of a two-step decay. 
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