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Abstract 

The evaluation of a median is extended to the case where (reliable) 
statistical weights are available. An estimate of the corresponding 
uncertainty is also given and the approach is illustrated by a numerical 
example. A special study explains why a weighted median always coincides 
with one of the measurements and why a similar rule holds for MAD, a 
measure of its uncertainty. 

1. Introduction 

Some time ago we proposed [1) to replace the mean value, which is traditionally used 
as location parameter, by the median as it has improved statistical "robustness". While 
suggesting this we had in mind the analysis of international comparisons, where the 
data come from participants who may have used different measuring techniques. The 
results also include estimations of the uncertainties. Although the principles used for 
their evaluation are now accepted on a worldwide basis (2), it would be naive to believe 
that all problems have therefore disappeared. Since the statistical weights of 
measurement results are in most cases derived directly from the uncertainties, any 
problem that may exist with uncertainties will necessarily also occur in the context of 
weights, normally even in a more pronounced way. 

Experience shows that laboratories may have particular "habits". While some have a 
tendency to enlarge uncertainties, probably as a measure of "protection", others take 
the opposite position. If high precision is linked to prestige, there is a danger that 
stated values are sometimes unrealistically small. The analyzer of the submitted data 
then is in a most uncomfortable position. He notes the great spread in the uncertainties 
and suspects that some are too large, others too small, but obviously he cannot change 
them. On the other hand, if he takes them as stated to infer statistical weights, he well 
realizes that in this way he would favour the rash and punish the cautious 
experimenter. This looks like a situation without any satisfactory issue. All he can do 
(without endangering his relations with colleagues) is to ignore the stated uncertainties. 
Then all submitted values receive the same weight. This is not an uncommon situation 
for intercomparisons. Considering this, the fact that weights had been disregarded in 
[1) is perhaps not so great a loss. 



Nevertheless, there clearly exist situations where the relative uncertainties, and 
therefore also the statistical weights of the input values, deserve confidence. In these 
cases it would be desirable to have available an algorithm which allows us to take them 
into account .. 

It is well known that the use of weights does not automatically improve the results. 
Wrong weights can even severely distort the data, and this can sometimes be seen 
afterwards. Thus, if the uncertainty of a weighted result is clearly larger than for 
unweighted data, we were probably misled in accepting the weights. In this case it may 
be wise to go back to the unweighted case. Obviously, this also applies to mean values. 

2. The formal introduction of weights 

Before we try to generalize medians, it may be useful to recall briefly what we know 
already [1]. 

Let us consider a set of n measurements. In the general case they will be noted zi. This 
may correspond to the order in which they were obtained. However, for many 
situations it is preferable to assume that they are ordered. In this case, we shall denote 

them by xi' 

with Xi < Xi+ l' for 1 s i s n-l. (1) 

If two input values Z coincide numerically, they may be combined into a single ordered 
value x, with summed weight. For simplicity, all values will be assumed positive. 

For a series of n measurements ~ , the median, written as m = med {~}, can be 
considered as the solution of the condition 

n 
! \~ -m\ = min. 
i=l 

The median ID, therefore, plays a similar role as the better-known mean value m 
which is known to solve the analogous least-squares condition 

~ (~- m)2 = min. 
1 

As a measure of the precision of a median, it is practical to evaluate first a quantity 
called MAD (for "median of the !:bsolute geviations"), defined by 

which is the solution of 

MAD = med n~ -mU ' 

! II~ - m\ - MAD\ = min. 
i 

(2) 

(3) 

(4) 

(5) 
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We now want to apply statistical weights. It is not always quite clear on what they are 
based; an innocent view is to consider them just as experimentally "given". A better way 
would be to link them to the number of (equivalent) measurements, if these are known. 
More frequent will be the case where they are based on (supposedly reliable) 
uncertainties s. , which themselves usually come from an evaluated variance or an 

1 

associated quantity; s2(m) will only rarely be available [1]. Whatever the exact origin 

of si' the weight wi > 0 of a result ~ will be taken as 

or also in its normalized form 

with! p. = 1. 
i 1 

wi = 1 / Si2 
, (6) 

(7) 

It does not matter for the evaluation of the median if we use wi or Pi since the minimum 
occurs for the same argument. 

Although we assume here for convenience that the weights are positive, this is not a 
condition. As is well known [3], weights may become negative for (strongly) correlated 
data, but their formal treatment does not change. If we can suppose the results to be 
independent of each other, this complication does not occur. 

The introduction of statistical weights is now straightforward. When we go back to the 
basic approach (2), it is readily seen that this can be generalized to 

! p. I~ - ml = min. 
i 1 

Likewise, relation (5), when including weights Pi ' now becomes 

! p. II~ - ml - MADI = min. 
i 1 

Equations (8) and (9) are the required generalizations for weighted medians. 

The practical evaluation of m and MAD is somewhat more cumbersome. Whereas 

previously the median could be easily found by ranking the available data (cf. eq. 2 

in [1]), this is no longer possible with weights. The numerical solutions m for (8) 

and MAD for (9) now have to be determined empirically, and a simple program 

(even on a pocket computer) will soon prove useful. 

Once MAD is known numerically, the wanted uncertainty s(m) of the weighted sample 

median m is still given by (cf. eq. 9 in [1]) 

(8) 

(9) 

s(m) ~ 2d!... MAD, (10) 
~n-l 

where n is the number of data zi and with MAD now obtained from (9). 
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The practical application of the recipe sketched above to a particular case may serve as 
an illustration of the procedure. This is done below. 

3. A numerical example 

To illustrate how the determination of a median and its uncertainty can be obtained in 
the case of statistical weights, we use data which have been provided by the IAEA. 
They are in the form z. ± s., from which the weights were deduced. 

1 1 

z. Si w. = s.-2 Pi 1 1 1 

1 35.03 0.21 22.68 0.350 

2 34.15 0.4 6.25 0.096 

3 34.15 0.4 6.25 0.096 

4 35.44 0.61 2.69 0.042 

5 35.14 0.7 2.04 0.032 

6 34.03 0.4 6.25 0.096 

7 34.23 0.4 6.25 0.096 

8 34.13 0.4 6.25 0.096 

9 34.20 0.4 6.25 0.096 

sum: 64.91 1.000 

a) Mean value 

If we use the trial value rn = 34.2 , the 9 contributions to 

Q = I Pi I~ - rnl 
i 

are, for the above data, 

Pi IZi - 34.21 Pi IZi - 34.21 

1 0.29050 6 0.01632 

2 0.00480 7 0.00288 

3 0.00480 8 0.00672 

4 0.05208 9 0.00000 

5 0.03008 

Q = 0.40818 

4 



For some other trial values chosen for rn, the numerical results obtained 

for Q are assembled below. 

- Q - Q m m 

34.0 0.54290 34.18 0.41282 

34.1 0.45634 34.22 0.40738 

34.2 0.408 18 34.23 0.40698 

34.3 0.41762 34.24 0.40850 

34.4 0.43282 34.25 0.41002 

We see that the minimum looked for occurs at 

rn = 34.23. 

b) Uncertainty 

We form the quantity 

Q' = I p. II~ - rnl - MADI ' 
i 1 

with rn = 34.23 and various trial values for MAD. The numerical results are 

MAD Q' MAD Q' 

0.15 0.34530 0.201 0.34345 

0.18 0.34410 0.21 0.34482 

0.19 0.34370 0.22 0.34634 

0.199 0.34334 0.25 0.35090 

0.200 0.34330 0.30 0.358 50 

The minimum looked for occurs at MAD = 0.20 . 

It follows from (10) that 

s(rn) - ~ 0.20 _ 0.13. 
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Hence, we can write for the required result 

m = 34.23 ± 0.13 . 

This may be compared with the unweighted case, for which we find 

m = 34.20 ± 0.05 . 

Obviously, the fact that the weighted median has a lower precision than the unweighted 
one is not a very encouraging result. It may indicate that the weights used, which are of 
heterogeneous origin, are unreliable and should not be trusted. On the other hand, since 
the uncertainty can only assume a limited number of values (see below), caution is 
required in the interpretation. Alternatively, a comparison with the corresponding mean 
values may be of interest. They are 

rh 34.50 ± 0.18, without weights, 

34.54 ± 0.17, with weights. 

These results seem to show that the uncertainty of the unweighted median is 
abnormally small, but the statistical basis is clearly too narrow for drawing a valuable 
conclusion. Dr. Ratel has studied several larger samples, especially international 
comparisons. It follows from them that weighting normally has a very limited influence 
on the median and its uncertainty. The situation is therefore similar to the one which 
applies to mean values, with little or no improvement by using weights given by the 
participants. 

4. Possible values for median and MAD 

A critical look at the numerical values obtained for the median in our example (as well 
as in others) reveals that they apparently always coincide with measured values Zj • 

While this is a well-established feature [1] for unweighted data, it is somewhat 
surprising to find that this peculiarity should still hold when arbitrary weights are 
applied. A keen observer may even find evidence that a similar principle seems to apply 
to the numerical values of MAD which always appear to be of the form Im - zjl ' 
Le. they correspond to the difference between two measured values - a fact which 
apparently has not been noted before. 

The question is whether the above observations are correct and, if so, whether this can 
be understood. As the treatment of this problem would sidetrack the present 
discussion, we shall discuss it later. It is explicitly solved in Appendix A for the median, 
and in Appendix B for MAD. 

The result is not a mere curiosity, but is of real interest to the calculator. 

Without knowledge of this simplification, the numerical search for the parameters 

m and MAD would have to be made for a considerable range of trial values. The following 
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two simple rules are obtained: 

a) m must be equal to a specific value zi ,occasionally to two (or their mean); 

b) MAD must be equal to Im - zil ' i.e. to the difference between two input 

values, one of them being the median (occasionally to the mean of two differences). 

Note that the complication with two possible solutions can only occur in the 
unweighted case, as shown in Appendix A. 

Application of these rules greatly shortens the search. Another consequence is that 
there is no need to use trial values which have more decimals than the input values. On 
the other hand, the use of weights may result in a clear enlargement of the range of 
values. 

Whereas, for the case of no weights, the median was always close to the central value, 
this is not necessarily so when weights are used. This fact is illustrated in Appendix C 
by an instructive simple case. It follows that, in principle, any input value, even an 
extreme one, can become a median; the decision depends entirely on the chosen 
statistical weights. 

5. Final remarks 

My interest in the evaluation of a weighted median was initiated by a request from 
Dr. P. Andreo, of the lAEA in Vienna. In December 1998 he sent me numerical data for a 
number of stopping-power ratios for protons, usually denoted by Wand measured in eV. 
He had determined their median, but wondered if there was a possibility of doing this 
by using statistical weights, since their empirical uncertainties differed greatly. In 
January 1999 I sent him, as an answer, an outline of the suggested general approach, 
together with an application to his data. This document corresponds to a large extent 
to the present report. Apart from some additional text, the only new developments are 
those presented here as Appendices. 

As in the meantime I have been approached by several other colleagues who asked me 
for a comprehensive text explaining how to use weights for a median, I decided to 
assemble the available information in a document that can be distributed to those 
interested. So much for the origin of this report, which may also explain some of its 
shortcomings. 

I am grateful to Pedro Andreo (lAEA) for his stimulus, Guy Ratel (BIPM) for help with 
numerical calculations and Barry Taylor (NIST) for his interest. As is the case for all 
previous reports, this one could not have been issued either in its present form without 
the constant assistance of my wife Denise, who should be thanked for her patience. 

7 



APPENDICES 

A. Position of the weighted median 

One of the basic questions is why not only the ordinary median, but also its weighted 
form always seem to coincide with one of the original measurement values (the case 
without weights was treated in [1 D. 

With weights Pi and ordered values xi ' the problem is to find for which value t = ID 
the quantity 

n 
Q(t) = ! p. It - x·1 

i=l 1 1 

assumes its minimum. 

Let us consider for t the range xk ~ t ~ xk+l . We then have 

Let us look at the values for the lower and upper limits of t. 

- for t = xk : 
k n ( I p. - n ) Q = -! p~ + ! P.Xi + Xk ! p. , - i=l 1 i=k+l 1 i=l 1 i=k+l 1 

k n ( I p. - I P.) . Q+ = -! p.x· + ! p.x. + Xk+l 
III k+l 1 1 1 1 k+l 1 

- for t = xk+l : 

We now form the difference 

Q -Q 
+ - = (xk+l - xk) [I p. - I p. ] . 

1 1 k+l 1 

Since xk+l > xk ' the sign of Q+ -Q_ is determined by the sign of 

k n 
ttP == ! p. - ! p .. 

1 1 k+l 1 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 
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Therefore 

- if ~p > 0: Q - Q > 0 + -
and Q is minimal for 

(A6) 

- if ~p < 0: Q - Q < 0 
+ -

and Q is minimal for m = xk+l . 

The only ambiguity for m occurs if ~p = o. 

However, for n = 2k and equal weights p for all values xi ' we always have 
~p = kp - (2k - k) P = O. This explains why, for an even number of data and no weights, 

the median can be m = xk' xk+l or any intermediate value. 

With weights, the case ~p = 0, although possible, is unlikely to occur. For this reason, 

m then practically always agrees with a (single) measured value. 

B. In search of the structure of MAD 

We have seen in (9) that MAD, the basic quantity used for the evaluation of 
uncertainties, is defined as the solution of 

Q = ! p. IIX· - ml - MADI = min. 
ill 

It is practical to use instead of MAD another variable. Without loosing anything in 
generality, we can, for example, put 

MAD = It-ml, 

(B1) 

(B2) 

introducing thereby t as the new variable. This should make it easier to see if MAD is 
indeed of the form suggested in section 4. The reasoning to be presented is similar to 
that outlined in Appendix A, although somewhat more involved. 

For the transformation of absolute values into positive or negative ones, as required for 
determining a minimum, it is necessary to know the relative order of the three 

quantities Xi' m and t, for which there are 3! = 6 possibilities. 

We shall see that it is sufficient to distinguish between two cases, namely 

- IX if both Xi and t are on the same side of m. 
~ if ~ and t are on different sides of m. 

i.e. ~, t < m, or ~ , t > m ; 
i.e. ~ < m <t, or t < m < xi. 
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Let us briefly discuss all possibilities. 

Case (X 

Here we have 

lXi - rnl - It - rnl rn -xi - (rn - t) t - ~ , for Xi' t < rn, 

or = xi - rn - (t - rn) = xi - t , 

Hence, for case <X we always have 

and therefore also 

Q(t) = ! p. It - xd . 
i 1 

Since (B3) is identical with (Al), it also assumes its minimum value at t = x
k 

or xk+1 ' as shown in (A6). 

Case~ 

Here we have 

!Xi - rnl - It - rnl ~ -rn - (rn - t) = ~ + t - 2rn , for t < rn < ~ 

or = rn -xi - (t - rn) = 2rn - (xi + t) , for xi < rn < t . 

Therefore, we always have for case ~ 

and thus also 

Q(t) = ! p. I~ + t - 2rnl . 
i 1 

(B3) 

(B4) 

(B5) 

(B6) 

We now look for the value of t which makes Q minimal. There are again two possibilities. 

Let us suppose that ~ + t < 2rn , for t < t , 

but xi + t > 2rn , for t > t . 
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Hence 

for t < t. 

-but = x· + t - 2rn 1 • for t > t . 

Since the critical value t must necessarily fall in an interval bounded by measured 

values. say between xk and xk+1 • we can also write for (B6) 

k n 
Q(t) = ! p. (2rn - x· - t) + ! p. (x. + t - 2rn) 

i=1 1 1 i=k+1 1 1 

[

k n ] k n 
(2rn - t) ! p. - ! p. - ! p. ~ + ! p. ~ . 

I 1 k+1 1 i 1 k+1 1 

With the abbreviation l1P. introduced in (A5). we now obtain for the two limiting 
values of t 

_ k n 

- for t = xk+l: Q+ = (2rn - xk I) l1P - ! p. x· + ! Pl· Xl· • + III k+1 

In order to find the minimum, we form the difference 

From this we conclude. since xk+1 > xk • that 

- for l1P > 0: Q < Q . 
- + 

Hence the minimum of Q is reached at t = xk' and therefore 

MAD = IXk - rnl ; 

- for l1P < 0: Q < Q . + -

Hence the minimum of Q is reached at t = xk+1 • and therefore 
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(BB) 

(B9) 

(BtO) 



It follows from all this that, for both cases a and ~, MAD is indeed of the form 
Im - ~I, as claimed in section 4. 

Again, there can only be an ambiguity in the solution t for ~p = 0, as it had already 
occurred for the median m. For a discussion we refer to the end of Appendix A. 

This result for the form of MAD is no doubt new and rather unexpected. 

C. Extreme medians 

Medians, according to their definition, are central values. While this is clearly true in 
the unweighted case, the question arises if it is still so when weights are used. After all, 
the purpose of weights is to give more credibility to some measurements than to others. 
If an extreme value has a high weight, can it become a median? 

In order to decide this question, we consider a special case of n (ordered) results x .. It 
1 

is practical to use non-normalized weights, and we choose in particular 

W = M' 
I ' 

for 2 s i S n, 

Since our interest is focused on the minimal value xl ' we can write, for the range 

xl S t S "2 ' 

Q(t) = M(t - Xl) + ("2-t) + ... + (Xn-t) 

-MxI + "2 + ... + Xn + t[M - (n-l)] . 

Hence, we have 

The difference is 

(Cl) 

(C2) 

(C3) 

(C4) 
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The minimum of Q is reached at xl if the difference is positive. For the median. 
this means that 

-m = xl . if M > n-1 . 

This example therefore shows that also an extreme value (here the minimum xl) 
may become a median. provided that its weight is sufficiently high. 

In a similar way it is possible to show for these data that 

m = "2. if n-3 < M < n-1 • 

Xa • if n-5 < M < n-3. etc. 
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